Weekplan: Introduction to Data Structures
The 02105+02326 DTU Algorithms Team

Reading

Exercises

1 **Stacks and Queues**

1.1 CLRS [w] 10.1-1.

1.2 Exercise 5.1 in the exam set from 2011.

1.3 CLRS 10.1-2.

1.4 CLRS [w] 10.1-3.

1.5 CLRS 10.1-6.

2 **Algorithms on Linked Lists** Look at the algorithms FOO and BAR and the linked list below. Solve the following exercises.

\[
\text{FOO(} \text{head} \text{)} \\
\text{ } x = \text{head} \\
\text{ } c = 0 \\
\text{ } \text{while} \ x \neq \text{null do} \\
\text{ } \quad x = x.\text{next} \\
\text{ } \quad c = c + 1 \\
\text{ } \text{end while} \\
\text{ } \text{return} \ c
\]

\[
\text{BAR(} x, s \text{)} \\
\text{ } \text{if} \ x = null \text{ then} \\
\text{ } \quad \text{return} \ s \\
\text{ } \text{else} \\
\text{ } \quad \text{return} \ \text{BAR(} x.\text{next}, s + x.\text{key} \text{)} \\
\text{ } \text{end if}
\]

2.1 [w] Run FOO(head) by hand.

2.2 [w] Explain what FOO computes.

2.3 Run BAR(head, 0) by hand.

2.4 Explain what BAR does.
3 Implementation of Linked Lists Assume x is an element in a singly linked list as described in the lecture. Solve the following exercises.

3.1 $[w]$ Assume x is not the last element in the list. What is the result of the following code snippet?

```cpp
x.next = x.next.next;
```

3.2 $[w]$ Let t be a new element that is not already in the list. What is the result of the following code snippet?

```cpp
t.next = x.next;
x.next = t;
```

3.3 $[w]$ Suppose we now swap the order of the statements:

```cpp
x.next = t;
t.next = x.next;
```

What happens now? The same as above?

4 Implementation of Stacks and Queues Solve the following exercises.

4.1 $[†]$ Implement a stack that can contain integers using a singly linked list.

4.2 $[†]$ Implement a queue that can contain integers using a singly linked list.

5 Sorted Linked Lists Let L be a singly linked list consisting of n integers in sorted order. Solve the following exercises.

5.1 Give an algorithm to insert a new integer in L such that the list is still sorted afterwards.

5.2 Professor Gørtz suggests one can improve the insertion algorithm by using binary search. Is she right?

6 List Reversal Give an algorithm to reverse a singly linked list, ie. produces a singly linked list with the elements in the reversed order. Your algorithm should run in $\Theta(n)$ time and not use more than constant extra space (in addition to the list).

7 Dynamic Arrays and Stacks We are interested in implementing a stack using a dynamic array without a maximum size for the array in the beginning. Solve the following exercises.

7.1 $[*]$ Generalize dynamic arrays to also support stacks that shrinks (ie. supports both PUSH and POP operations). The running time of any sequence of n operations must be $\Theta(n)$ and at any point in time your solution should use linear time in the number of elements currently in the stack.

7.2 $[**]$ Show how one can obtain $O(1)$ time per stack operation using dynamic arrays and linear space in the number of elements currently in the stack. Only consider growing stacks and thus ignore POP. Hint: Consider how the work can be evenly distributed over all operations.