Analysis of Algorithms

- Analysis of algorithms
 - Running time
 - Space
- Asymptotic notation
 - O, Θ og Ω-notation.
- Experimental analysis of algorithms
Analysis of Algorithms

• Analysis of algorithms
 • Running time
 • Space
• Asymptotic notation
 • O, Θ, Ω-notation.
• Experimental analysis of algorithms
Analysis of Algorithms

• **Goal.** Determine and *predict* computational resources and correct of algorithms.

• **Ex.**
 • Does my route finding algorithm work?
 • How quickly can I answer a query for a route?
 • Can it scale to 10k queries per second?
 • Will it run out of memory with large maps?
 • How many cache-misses does the algorithm generate per query? And how does this affect performance?

• **Primary focus**
 • Correctness, running time, space usage.
 • Theoretical and experimental analysis.
Running time

- **Running time.** Number of *steps* an algorithm performs on an input of size n.

- **Steps.**
 - Read/write to memory (x := y, A[i], i = i + 1, ...)
 - Arithmetic/boolean operations (+, -, *, /, %, &&, ||, &, |, ^, ~)
 - Comparisons (<, >, =<, =>, =, ≠)
 - Program flow (if-then-else, while, for, goto, function call, ..)

- **Terminologi.** Running time, time, time complexity.
Running time

- **Worst-case running time.** Maximal running time over all input of size n.
- **Best-case running time.** Minimal running time over all input of size n.
- **Average-case running time.** Average running time over all input of size n.

- **Terminologi.** Time = worst-case running time (unless otherwise stated).
- **Other variants.** Amortized, randomized, deterministic, non-deterministic, etc.
Space

- **Space.** Number of memory cells used by the algorithm
- **Memory cells.**
 - Variables and pointers/references = 1 memory cells.
 - Array of length $k = k$ memory cells.
- **Terminologi.** Space, memory, storage, space complexity.
Analysis of Algorithms

• Analysis of algorithms
 • Running time
 • Space
• Asymptotic notation
 • O, Θ og Ω-notation.
• Experimental analysis of algorithms
Asymptotic Notation

- Asymptotic notation.
 - O, Θ og Ω-notation.
 - Notation to **bound** the **asymptotic** growth of functions.
 - Fundamental tool for talking about time and space of algorithms.
O-notation

- **Def.** \(f(n) = O(g(n)) \) hvis \(f(n) \leq cg(n) \) for large \(n \).
O-notation

- **Ex.** $f(n) = O(n^2)$ if $f(n) \leq cn^2$ for large n.

- $5n^2 = O(n^2)$?
 - $5n^2 \leq 5n^2$ for large n.

- $5n^2 + 3 = O(n^2)$?
 - $5n^2 + 3 \leq 6n^2$ for large n.

- $5n^2 + 3n = O(n^2)$?
 - $5n^2 + 3n \leq 6n^2$ for large n.

- $5n^2 + 3n^2 = O(n^2)$?
 - $5n^2 + 3n^2 = 8n^2 \leq 8n^2$ for large n.

- $5n^3 = O(n^2)$?
 - $5n^3 \geq cn^2$ for all constants c for large n.
O-notation

- Def. \(f(n) = O(g(n)) \) if \(f(n) \leq cg(n) \) for large \(n \).
- Def. \(f(n) = O(g(n)) \) if there exist constants \(c, n_0 > 0 \), such that for all \(n \geq n_0 \), \(f(n) \leq cg(n) \).
O-notation

• Notation.
 • $O(g(n))$ is a er set of functions.
 • Think of = as \in or \subseteq.
 • $f(n) = O(n^2)$ is ok. $O(n^2) = f(n)$ is not!
O-notation

• $f(n) = O(g(n))$ if $f(n) \leq cg(n)$ for large n.

• **Exercise.**
 • Let $f(n) = 3n + 2n^3 - n^2$ and $h(n) = 4n^2 + \log n$
 • Which are true?
 • $f(n) = O(n)$
 • $f(n) = O(n^3)$
 • $f(n) = O(n^4)$
 • $h(n) = O(n^2 \log n)$
 • $h(n) = O(n^2)$
 • $h(n) = O(f(n))$
 • $f(n) = O(h(n))$
Ω-notation

- **Def.** $f(n) = \Omega(g(n))$ if $f(n) \geq cg(n)$ for large n.
- **Def.** $f(n) = \Omega(g(n))$ if exists constants $c, n_0 > 0$, such that for all $n \geq n_0$, $f(n) \geq cg(n)$
\[f(n) = \Theta(g(n)) \text{ if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \]
Asymptotic Notation

• $f(n) = O(g(n))$ if $f(n) \leq cg(n)$ for large n.
• $f(n) = \Omega(g(n))$ if $f(n) \geq cg(n)$ for large n.
• $f(n) = \Theta(g(n))$ if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

• Exercise. Which are true? ($\log^k n$ is $(\log n)^k$)
 • $n \log^3 n = O(n^2)$
 • $2^n + 5n^7 = \Omega(n^3)$
 • $n^2(n - 5)/5 = \Theta(n^2)$
 • $4 \cdot n^{1/100} = \Omega(n)$
 • $n^3/300 + 15 \log n = \Theta(n^3)$
 • $2^{\log n} = O(n)$
 • $\log^2 n + n + 7 = \Omega(\log n)$
Asymptotic Notation

• Basic properties.
 • Any polynomial grows proportional to it's leading term.
 \[a_0 + a_1 n + a_2 n^2 + \cdots + a_d n^d = \Theta(n^d) \]
 • All logarithms are asymptotically the same.
 \[\log_a(n) = \frac{\log_b n}{\log_b a} = \Theta(\log_c(n)) \quad \text{for all constants } a, b > 0 \]
 • All logarithms grows slower than all polynomials.
 \[\log(n) = O(n^d) \quad \text{for all } d > 0 \]
 • All polynomials grow slower than all exponentials.
 \[n^d = O(r^n) \quad \text{for all } d > 0 \text{ and } r > 1 \]
Typical Running Times

for $i = 1$ to n
 $\Theta(1)$ time operation

for $i = 1$ to n
 for $j = 1$ to n
 $\Theta(1)$ time operation

for $i = 1$ to n
 for $j = i$ to n
 $\Theta(1)$ time operation
Typical Running Times

\[
T(n) = \begin{cases}
T(n/2) + \Theta(1) & \text{if } n > 1 \\
\Theta(1) & \text{if } n = 1
\end{cases}
\]

\[
T(n) = \begin{cases}
2T(n/2) + \Theta(n) & \text{if } n > 1 \\
\Theta(1) & \text{if } n = 1
\end{cases}
\]

\[
T(n) = \begin{cases}
2T(n/2) + \Theta(1) & \text{if } n > 1 \\
\Theta(1) & \text{if } n = 1
\end{cases}
\]

\[
T(n) = \begin{cases}
T(n/2) + \Theta(n) & \text{if } n > 1 \\
\Theta(1) & \text{if } n = 1
\end{cases}
\]
Analysis of Algorithms

- Analysis of algorithms
 - Running time
 - Space
- Asymptotic notation
 - O, Θ og Ω-notation.
- Experimental analysis of algorithms
Experimental Analysis

- **Challenge.** Can we experimentally estimate the theoretical running time?
- **Doubling technique.**
 - Run program and measure time for different input sizes.
 - Examine the time increase when we **double** the size of the input.
- **Ex.**
 - Input size x 2 and time x 4.
 - ⟹ Algorithm probably runs in quadratic time.

- $T(n) = cn^2$
- $T(2n) = c(2n)^2 = c2^2n^2 = c4n^2$
- $T(2n)/T(n) = 4$

<table>
<thead>
<tr>
<th>n</th>
<th>time</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10000</td>
<td>0,2</td>
<td>-</td>
</tr>
<tr>
<td>20000</td>
<td>0,6</td>
<td>3</td>
</tr>
<tr>
<td>40000</td>
<td>2,3</td>
<td>3,8</td>
</tr>
<tr>
<td>80000</td>
<td>9,4</td>
<td>4</td>
</tr>
<tr>
<td>160000</td>
<td>37,8</td>
<td>4</td>
</tr>
</tbody>
</table>
Analysis of Algorithms

• Analysis of algorithms
 • Running time
 • Space
• Asymptotic notation
 • O, Θ og Ω-notation.
• Experimental analysis of algorithms