Weekplan: Searching and Sorting

The 02105+02326 DTU Algorithms Team

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 2.

Exercises

1 Run by Hand and Properties Solve the following exercises.
 1.1 CLRS [w] 2.1-1.
 1.2 CLRS [w] 2.1-2.
 1.3 CLRS 2.2-3.
 1.4 CLRS [w] 2.3-1.
 1.5 CLRS [BSc] 2.3-4.
 1.6 CLRS 2.3-6.

2 Duplicates and Close Neighbours Let $A[0..n-1]$ be an array of integers. Solve the following exercises.
 2.1 [w] A duplicate in A is a pair of entries i and j such that $A[i] = A[j]$. Give an algorithm that determines if there is a duplicate in A in $\Theta(n^2)$ time.
 2.2 Give an algorithm that determines if there is a duplicate in A in $\Theta(n \log n)$ time. Hint: use merge sort.
 2.3 A closest pair in A is a pair of entries i and j such that $|A[i] - A[j]|$ is minimal among all the pairs of entries. Give an algorithm that finds a closest pair in A in $\Theta(n \log n)$ time.

3 [BEng†] Implementation of Binary Search Implement the binary search algorithm.

4 Implementation and Correctness of Merge Sort Solve the following exercises.
 4.1 [†] Implement the merge algorithm.
 4.2 [†] Implement the merge sort algorithm.
 4.3 [BSc] Show that merge sort sorts all tables correctly. Hint: use induction.

5 2Sum and 3Sum Let $A[0..n-1]$ be an array of integers (positive and negative). The array A has a 2-sum if there exist two entries i and j such that $A[i] + A[j] = 0$. Similarly, A has a 3-sum if there exists three entries i, j and k such that $A[i] + A[j] + A[k] = 0$. Solve the following exercises.
 5.1 [w] Give an algorithm that determines if A has a 2-sum in $\Theta(n^2)$ time.
 5.2 Give an algorithm that determines if A has a 2-sum in $\Theta(n \log n)$ time. Hint: use binary search.
 5.3 [w] Give an algorithm that determines if A has a 3-sum in $\Theta(n^3)$ time.
 5.4 Give an algorithm that determines if A has a 3-sum in $\Theta(n^2 \log n)$ time. Hint: use binary search.
 5.5 [***] Give an algorithm that determines if A has a 3-sum in $\Theta(n^2)$ time.
6 Selection, Partition, and Quick Sort Let $A[0..n-1]$ be an array of distinct integers. The integer with rank k in A is the kth largest integer among the integers in A. The median of A is the integer in A with rank $\lceil (n-1)/2 \rceil$. Solve the following exercises.

6.1 Give an algorithm that given a k finds the integer with rank k in A in $\Theta(n \log n)$ time.

6.2 Give an algorithm to compute a partition of A in $\Theta(n)$ time.

6.3 [*] Give an algorithm to sort A in $\Theta(n \log n)$ time using recursive partition.

6.4 [**] Give an algorithm that given a k finds the integer with rank k in A in $\Theta(n)$ time.