Reading

Exercises

1. **Algorithms and Properties**
 1.1 (w) CLRS 24.3-1 (also show the contents of the priority queue).
 1.2 (w) CLRS 24.2-1
 1.3 CLRS 24.3-2
 1.4 CLRS 24.3-4
 1.5 Let \(T \) be a shortest path tree from a node \(s \) in a graph \(G \). Assume we add a constant \(c \) to all edge weights in \(G \). Is \(T \) still a shortest path tree?

2. **Cable Routing** Exercise 3 from the 2012 exam set (respectively 02326 and 02105)

3. **Longest Paths in DAGs** Give an algorithm to find the longest path in a DAG.

4. **BSc Negative Edges** Explain where in the proof of Dijkstra’s algorithm we use that edge weights may not be negative.

5. **Node Weighted Dijkstra** Let \(G \) be a directed graph where all nodes are associated with a non-negative weight. The weight of a path in \(G \) is the sum of the weights of the nodes on the path. Give an algorithm to compute the shortest path between two nodes in \(G \).

6. **[*] Zombie Travel** In the post-apocalyptic zombie world you need to know the safest travel between two cities such that you hopefully avoid being eaten by the zombies. You are given a graph \(G \) where each node represents a city and each edge a road between two cities. Each edge \(e \) has a probability \(s(e) \), \(0 \leq s(e) \leq 1 \) for surviving traveling on that edge without being eaten. The probabilities on each edge are independent and the probability of surviving the entire travel along a path \(P \) is the product of the probabilities of surviving on each edge of \(P \).

As an example look at the above graph. If you travel directly from node 2 to 4 you have 50% chance of surviving. If you instead travel via node 3 you have \(0.7 \cdot 0.9 = 63\% \) chance of surviving. If you travel via 3 and 1 you only have \(0.7 \cdot 0.1 \cdot 0.5 = 3.5\% \) chance of surviving. Give an algorithm that computes the safest way from a node \(s \) to another node \(t \).
7 **Loopy Trees** A *loopy tree* is a weighted directed graph constructed from a binary tree by adding an edge from each leaf to the root. All edges have non-negative weights.

7.1 How long time does Dijkstra’s algorithm use to compute the shortest path from a node s in a loopy tree?

7.2 [∗] Give a faster algorithm.