Weekplan: Priority Queues and Heaps

Philip Bille

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 6 + Appendix B.5

Exercises

1 Heap Properties and Run by Hand Solve the following exercises.

1.1 [w] Which of the following trees are heaps?

1.2 [w] Which of the following arrays are heaps? Index 0 is not used and is therefore marked with −

\[A = [-9, 7, 8, 3, 4] \quad B = [-12, 4, 7, 1, 2, 10] \quad C = [-5, 7, 8, 3] \]

1.3 [w] Let \(S = 4, 8, 11, 5, 21, *, 2, * \) be a sequence of operations where a number corresponds to an insertion of that number and * corresponds to an \textsc{ExtractMax} operation. Starting with an empty heap \(H \), show how \(H \) looks after each operation in \(S \).

1.4 Is a sorted array a heap?

1.5 Where can the minimum element be found in a (max-)heap?

1.6 [BSc] Show that \textsc{Insert}, \textsc{ExtractMax} and \textsc{IncreaseKey} maintains the heap property.

1.7 [*] CLRS 6.5-9.

2 [w] Priority Politics The Kakistocratic Party want you to help them implement their "Fresh Air"-policy. Design a registry of all citizens and their income such that one can efficiently find those with the lowest income and deport them. Specifically, the system must support the following operations.

- \textsc{Insert}(c, i): insert a person with social number \(c \) and a yearly income \(i \) in the system.
- \textsc{DeportLowestIncome}(): Remove and return the person with the lowest income.

Design an efficient solution for the system.
3 Priority Queue Operations We now want to extend the set of operations on priority queues. We are interested in
the following operations.

- \textsc{RemoveLargest}(m): remove the \(m\) largest elements in the priority queue.
- \textsc{Delete}(x): remove the element \(x\) from the priority queue.
- \textsc{Fusion}(x, y): remove \(x\) and \(y\) from the priority queue and add the element \(z\) with key \(x.key + y.key\).
- \textsc{FindLargest}(): return the elements in the priority queue with key \(\geq x\).
- \textsc{ExtractMin}: Remove and return the element with the lowest key.

We want to support these operations efficiently, while maintaining the complexities of the standard operations. Let \(n\)
be the number of elements in the priority queue. Solve the following exercises.

3.1 Extend the priority queue to support \textsc{RemoveLargest}(m) in \(O(m \log n)\) time.

3.2 Extend the priority queue to support \textsc{Delete} and \textsc{Fusion} in \(O(\log n)\) time.

3.3 \([\ast]\) Extend the priority queue to support \textsc{FindLargest} in \(O(m)\) time, where \(m\) is the number of elements with key
\(\geq x\).

3.4 \([\ast]\) Extend the priority queue to support \textsc{ExtractMin} in \(O(\log n)\) time.

4 Satellite Data Let \(A[0..n]\) be a heap represented as an array. Each element \(x\) in the heap is represented by an index
\(i\) and the key stored in \(A[i]\). It is often useful to store some extra information (called satellite data) associated with an
element (for instance if we want to store persons in a heap the satellite data could be age, gender, height, weight, etc).
Show how to support access to satellite data in \(O(1)\) time only given the index \(i\) while still maintaining the running times
for the standard heap operations.

5 Heap Properties Let \(T\) be a complete binary tree of height \(h\). Solve the following exercises.

5.1 Show the number of nodes in \(T\) is \(n = 2^{h+1} - 1\). \textit{Hint:} we know \(n = 1 + 2 + 4 + \cdots + 2^h\). Multiply the sum by \(2\) and
subtract the sum.

5.2 \([\text{BSc}]\) Show that the sum, \(S = n/4 \cdot 1 + n/8 \cdot 2 + n/16 \cdot 3 + n/32 \cdot 4 + \cdots = \Theta(n)\). \textit{Hint:} Calculate \(S - S/2\).

6 Implementation of Heaps We are interested in implementing a priority queue using a heap represented by an
array. Solve the following exercises.

6.1 \([\dagger]\) Implement the \textsc{Insert} and \textsc{ExtractMax} operations.

7 Sums Let \(A[0..n - 1]\) be an array of integers. We are interested in the following operations on \(A\).

- \textsc{Change}(i, x): set \(A[i] = x\).

Solve the following exercises.

7.1 \([w]\) Give a data structure that supports \textsc{Sum} in \(O(1)\) time and uses \(O(n^2)\) space.

7.2 \([\ast]\) Give a data structure that supports \textsc{Sum} in \(O(1)\) time and uses \(O(n)\) space.

7.3 \([\ast\ast]\) Give a data structure that supports both \textsc{Sum} and \textsc{Change} in \(O(\log n)\) time and uses \(O(n)\) space.

M Mandatory Exercise: Heaps and Arrays Let \(A[0..n]\) be an array, \(n \geq 1\). Solve the following exercises.

- Give an algorithm that decides whether or not \(A\) represents a heap.
- Write the pseudo-code for your algorithm.