Weekplan: Analysis of Algorithms

Philip Bille

Reading

Exercises

1 [w] **Asymptotic Growth** Arrange the following functions in increasing asymptotic order, i.e., if \(f(n) \) precedes \(g(n) \) then \(f(n) = O(g(n)) \).

\[
\begin{align*}
\log_2 n + n \sqrt{n} & \quad 2n + n^2 & \quad 2^n & \quad n^3 & \quad \sqrt{n} & \quad n \\
\log_2 n + n \sqrt{n} & \quad 2n + n^2 & \quad 2^n & \quad n^3 & \quad \sqrt{n} & \quad n \\
2^n & \quad n^2 & \quad 2^n & \quad n^3 & \quad \sqrt{n} & \quad n \\
n(n-6) & \quad 4\sqrt{n} & \quad n & \quad n & \quad \sqrt{n} & \quad n
\end{align*}
\]

2 **Θ-notation** Write the following expressions using \(\Theta \)-notation.

\[
\begin{align*}
\frac{n^2 + n^3}{2} & \quad 2^n + n^4 & \quad \log_2 n + n \sqrt{n} & \quad n(n-6) & \quad 4\sqrt{n} \\
8 \log_2^2 n + 34 \log_2 n + \frac{1}{1000} n & \quad 2^n + 5 \log_2^3 n & \quad n(n^2 - 18) \log_2 n & \quad n \log_2^4 n + n^2 & \quad n^3 \log_2 n + \sqrt{n} \log_2 n
\end{align*}
\]

3 **Loopy Loops** Analyze the running time of the following loops as a function of \(n \) and express the result in \(\Theta \)-notation.

LOOP1(n)

\[
\begin{align*}
\text{for } i = 1 \text{ to } n & \\
\text{while } i \leq n & \\
\text{do } & \\
\text{print } "*" & \\
i & = 2 \cdot i & \\
\text{end while}
\end{align*}
\]

LOOP2(n)

\[
\begin{align*}
\text{for } i = 1 \text{ to } n & \\
\text{while } i \leq n & \\
\text{do } & \\
\text{print } "*" & \\
i & = 5 \cdot i & \\
\text{end while}
\end{align*}
\]

LOOP3(n)

\[
\begin{align*}
\text{for } i = 1 \text{ to } n & \\
\text{do } & \\
\text{while } j \leq n & \\
\text{do } & \\
\text{print } "*" & \\
j & = 2 \cdot j & \\
\text{end while}
\end{align*}
\]

4 **Asymptotic Statements** Which of the following statements are true?

\[
\begin{align*}
\frac{1}{20} n^2 + 100n^3 & = O(n^2) & \frac{n^3}{1000} + n + 100 & = \Omega(n^2) \\
\log_2 n + n & = O(n) & 2^n + n^2 & = \Omega(n) \\
2^{\log_2 n} & = O(n) & \log_4 n + \log_{16} n & = \Theta(\log n) \\
n^3(n-1)/5 & = \Theta(n^3) & n^{1/4} + n & = \Theta(n) \\
\log_2 n + n & = \Theta(n) & 2^{\log_2 n} & = \Theta(\sqrt{n})
\end{align*}
\]
5 Doubling Hypothesis Solve the following exercises.

5.1 [w] The algorithm \(A \) runs in exactly \(7n^3 \) time on an input of size \(n \). How much slower does it run if the input size is doubled?

5.2 [BEng] The algorithm \(B \) runs in time respectively 5, 20, 45, 80 and 125 seconds on input of sizes 1000, 2000, 3000, 4000 and 5000. Estimate how long the running time will be of \(B \) on an input of size 6000. What is the running time of \(B \) expressed using \(\Theta \)-notation?

5.3 The algorithm \(C \) runs 3 seconds slower each time the size of the input is doubled. What is the running time of \(C \) expressed using \(\Theta \)-notation?

6 Asymptotic Properties Solve the following exercises.

6.1 CLRS 3.1-1

6.2 CLRS 3.1-3

6.3 CLRS 3.1-4

6.4 [BSc] Show that \(\log_2(n!) = \Theta(n \log n) \). Hint: Start by showing the upper bound.

6.5 [BSc] CLRS 3-2

7 Generalized Merge Sort Professor Gørtz suggests the following variant of merge sort called 3-merge sort. 3-merge sort works exactly like normal merge sort except one splits the array into 3 parts instead of 2 that are then recursively sorted and merged. Solve the following exercises.

7.1 Show it is possible to merge 3 sorted arrays in linear time.

7.2 Analyze the running time of 3-merge sort.

7.3 [*] Generalize the algorithm and the analysis of 3-merge sort to \(k \)-merge sort for \(k > 3 \). Is \(k \)-merge sort an improvement over the standard 2-merge sort?

8 Maximal Subarray Let \(A[0..n-1] \) be an array of integers (both positive and negative). A maximal subarray of \(A \) is a subarray \(A[i..j] \) such that the sum \(A[i] + A[i+1] + \cdots + A[j] \) is maximal among all subarrays of \(A \). Solve the following exercises.

8.1 [w] Give an algorithm that finds a maximal subarray of \(A \) in \(O(n^3) \) time.

8.2 Give an algorithm that finds a maximal subarray of \(A \) in \(O(n^2) \) time. Hint: Show it is possible to compute the sum of any subarray in \(O(1) \) time.

8.3 [**] Give a divide and conquer algorithm that finds a maximal subarray of \(A \) in \(O(n \log n) \) time.

8.4 [**] Give an algorithm that finds a maximal subarray of \(A \) in \(O(n) \) time.

M Mandatory Exercise: Complexity Solve the following exercises.

M.1 Arrange the following functions in increasing asymptotic order, i.e., if \(f(n) \) precedes \(g(n) \) then \(f(n) = O(g(n)) \).

\[
\begin{align*}
5000 \log_2 n & \quad n \log_2 n \\
\frac{n}{\log_2 n} & \quad \frac{1}{4} n^2 - 10000n \\
n^{1/100} & \quad 4n \log_2 n \\
\sqrt{n} + 7 & \quad 8n
\end{align*}
\]

M.2 State the running time of each of the following algorithms. Your asymptotic bound should be as tight as possible.

\[
\begin{align*}
\text{ALG1(n)} & \quad \text{ALG2(n)} & \quad \text{ALG3(n)} \\
\text{for } i = 1 \text{ to } n \text{ do} & \quad \text{for } i = 1 \text{ to } n \text{ do} & \quad \text{for } i = 1 \text{ to } n \text{ do} \\
j = 1 & \quad i = i + 1 & \quad k = j \\
\text{while } j \leq n \text{ do} & \quad j = 1 & \quad \text{while } k \leq n \text{ do} \\
j = j + 2 & \quad \text{while } j \leq n \text{ do} & \quad k = k \cdot 3 \\
\text{end while} & \quad j = j + 1 & \quad \text{end while} \\
\text{end for} & \quad \text{end while} & \quad \text{end for}
\end{align*}
\]