Reading

Exercises

1. **Run by Hand and Properties** Solve the following exercises.
 1.1 CLRS [w] 2.1-1.
 1.2 CLRS [w] 2.1-2.
 1.3 CLRS 2.2-3.
 1.4 CLRS [w] 2.3-1.
 1.5 CLRS [BSc] 2.3-4.
 1.6 CLRS 2.3-6.

2. **Duplicates and Close Neighbours** Let $A[0..n−1]$ be an array of integers. Solve the following exercises.
 2.1 [w] A *duplicate* in A is a pair of entries i and j such that $A[i] = A[j]$. Give an algorithm that determines if there is a duplicate in A in $\Theta(n^2)$ time.
 2.2 Give an algorithm that determines if there is a duplicate in A in $\Theta(n \log n)$ time. *Hint:* use merge sort.
 2.3 A *closest pair* in A is a pair of entries i and j such that $|A[i]−A[j]|$ is minimal among all the pairs of entries. Give an algorithm that finds a closest pair in A in $\Theta(n \log n)$ time.

3. **[BEng†]** Implementation of Binary Search Implement the binary search algorithm.

4. **Implementation and Correctness of Merge Sort** Solve the following exercises.
 4.1 [*] Implement the merge algorithm.
 4.2 [*] Implement the merge sort algorithm.
 4.3 [BSc] Show that merge sort sorts all tables correctly. *Hint:* use induction.

5. **2Sum and 3Sum** Let $A[0..n−1]$ be an array of integers (positive and negative). The array A has a *2-sum* if there exist two entries i and j such that $A[i] + A[j] = 0$. Similarly, A has a *3-sum* if there exists three entries i, j and k such that $A[i] + A[j] + A[k] = 0$. Solve the following exercises.
 5.1 [w] Give an algorithm that determines if A has a 2-sum in $\Theta(n^2)$ time.
 5.2 Give an algorithm that determines if A has a 2-sum in $\Theta(n \log n)$ time. *Hint:* use binary search.
 5.3 [w] Give an algorithm that determines if A has a 3-sum in $\Theta(n^3)$ time.
 5.4 Give an algorithm that determines if A has a 3-sum in $\Theta(n^2 \log n)$ time. *Hint:* use binary search.
 5.5 [**] Give an algorithm that determines if A has a 3-sum in $\Theta(n^2)$ time.
6 Selection, Partition, and Quick Sort Let \(A[0..n-1]\) be an array of distinct integers. The integer with rank \(k\) in \(A\) is the \(k\)th largest integer among the integers in \(A\). The median of \(A\) is the integer in \(A\) with rank \(\lfloor (n-1)/2 \rfloor\). Solve the following exercises.

6.1 Give an algorithm that given a \(k\) finds the integer with rank \(k\) in \(A\) in \(\Theta(n \log n)\) time.

A partition of \(A\) is a separation of \(A\) into two arrays \(A_{\text{low}}\) and \(A_{\text{high}}\) such that \(A_{\text{low}}\) contains all integers from \(A\) that are smaller than or equal to the median of \(A\) and \(A_{\text{high}}\) contains all the integers from \(A\) that are larger than the median of \(A\). Assume in the following that you are given a linear time algorithm to determine the median of an array.

6.2 Give an algorithm to compute a partition of \(A\) in \(\Theta(n)\) time.

6.3 [*] Give an algorithm to sort \(A\) in \(\Theta(n \log n)\) time using recursive partition.

6.4 [**] Give an algorithm that given a \(k\) finds the integer with rank \(k\) in \(A\) in \(\Theta(n)\) time.

M Mandatory Exercise: Smallest Missing Integer Let \(A\) be an array of length \(n\) such that each entry of \(A\) contains a unique integer from \(\{1, 2, \ldots, 2n\}\), i.e., half of the integers from the set \(\{1, 2, \ldots, 2n\}\) are present in \(A\) and the remaining numbers are missing. We interested in efficient algorithms to compute the smallest missing integer in \(A\), that is, smallest integer from \(\{1, 2, \ldots, 2n\}\), that does not appear in \(A\). For instance given \(A = [2, 7, 1, 8]\) (\(n = 4\)) the smallest missing integer is 3. Solve the following exercises.

M.1 Give an algorithm that solves the problem in \(\Theta(n)\) time. *Hint*: use an extra array of length \(2n\).

M.2 We now want to solve the problem fast, but also reduce the memory consumption as much as possible. Give an algorithm that solves the problem in \(\Theta(n^2)\) time and only uses a constant number of extra variables (e.g. 42 \texttt{int} variables in Java).

M.3 Now consider the case where the integers in \(A\) are chosen from the set \(\{1, 2, \ldots, n+1\}\) instead of \(\{1, 2, \ldots, 2n\}\). Give an algorithm that solves the modified problem in \(\Theta(n)\) time and only uses a constant number of extra variables.