
Mandatory Implementation Exercises

Philip Bille

Exercises

You must pass at least 2 out of 4 of these implementation exercises. To pass an exercise you must upload your solution
to CodeJudge and get a green smiley. You may program in any of the languages Java/C/C++/C#/Python/Rust/Pascal.

M Mandatory Exercise: Implement Pseudocode Translate the following pseudocode into a program.

INTEGERANALYZER()
A = INTARRAY(READINT())
for i = 0 to n− 1 do

A[i] = READINT()
end for
SORT(A)
for i = 0 to b(n− 1)/2c do

s = 0
for j = 0 to i do

s = s+ A[j] + A[n− j − 1]
end for
PRINTINT(s)

end for

INTARRAY(n) creates an integer array of size n. READINT() reads an integer from standard input. PRINTINT(s) prints s to
standard output. SORT sorts an array in ascending order (use the built-in function in your chosen programming language).

Sample Input Sample Output

5
3 9 42 -43 32 -1 34 52

M Mandatory Exercise: Recursion Implement a program that reads an integer n from standard input and then prints
f (n). Your program should be recursive. f (n) is given by:

f (x) =

¨

i if i ≤ 2

2 f (i − 1) + f (i − 2)− f (i − 3) otherwise

Sample Input Sample Output

5 25

M Mandatory Exercise: Alternating Paths Consider a n × n grid consisting of 0’s and 1’s. Create a program that
computes the length of a shortest path of alternating 1’s and 0’s from the upper left corner to the lower right corner (a
path can go left/right/up/down). The grid should be read from standard input, the first line is n and the remaining lines
are the grid. The program should output the shortest possible length to standard output.

1

Sample Input Sample Output

5
00010
11111
01000
01111
00000

13

M Mandatory Exercise: Binary Trees The following pseudocode constructs a binary tree from some input:

READBINARYTREE()
A= READINT()
if A= 0 then

return NULL
else

return NEWNODE(A, READBINARYTREE(), READBINARYTREE())
end if

READINT() reads an integer from standard input. NEWNODE(k, l, r) creates a new binary node with key k and left child l
and right child r.

An example of input to the program could be "5 3 0 0 4 2 0 0 1 0 0". Before solving the rest of the exercise, you should
try to draw the binary tree resulting from running the program on this input (you don’t have to hand-in this drawing).

Implement the above pseudocode. Extend the program to do a pre-order traversal of the binary tree. When visiting
a node v in the traversal, you should print the sum of v’s, LEFT(v)’s and RIGHT(v)’s keys (assume the key of a null node
is 0, but don’t print anything for NULL nodes).

Sample Input Sample Output

5 3 0 0 4 2 0 0 1 0 0 12 3 7 2 1

2

