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Affine independence

Definition (affine independce)

Let v1, . . . ,vp+1 be points in an n-dimensional Euclidean space En.
We call them affinely dependent if

(∃µ1, . . . ,µp+1 ∈ R)
p+1

∑
i=1

µi = 1∧
p+1

∑
i=1

µivi = 0.

Otherwise, we call them affinely independent.

Examples:
• three non-colinear points in E2 are affinely independent;
• four non-coplanar points in E3 are affinely independent;
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Simplex

Definition (Euclidean simplex)

Having p + 1 affinely independent points v1,v2, . . . ,vp+1 ∈ En, an
Euclidean simplex σ = 〈v1, . . . ,vp+1〉 is a set of points given by a
formula:

v = α1v1 + . . .+ αp+1vp+1,

where αi ≥ 0, ∑i αi = 1 (σ is the convex hull of v1, . . . ,vp+1).

• σ is a closed set in En.
• p is the dimension of σ (equivalently σ is an Euclidean

p-simplex).
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Simplices

We call a 0-simplex a vertex, a 1-simplex an edge, a 2-simplex a face
and a 3-simplex a tetrahedron.
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Faces

Definition (vertex, q-face)

We call each point vi a vertex of σ , and each simplex 〈vi1 , . . . ,viq+1〉
(0≤ q ≤ p, 1≤ ik ≤ p + 1) a q-face of σ (or simply a face of σ , if no
ambiguity arises).

• We also call all the (p−1)-faces of a p-simplex σp its boundary
faces.

• The faces of σ that are not equal to σ itself are called its proper
faces.

• The union of all the boundary faces of a simplex σ is called the
boundary of σ .
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Simplex sets

• For arbitrary, finite set of simplices Σ we define its dimension, as
the maximum dimension of the simplices in Σ:

dim(Σ) = max{dim(σ) : σ ∈ Σ}.

• We also define a k -subset of Σ as a set of all k -simplices in Σ:

filterk (Σ) = {σi ∈ Σ : dim(σi ) = k}.
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Euclidean simplicial complex

Definition (Euclidean simplicial complex)

A finite set Σ of Euclidean simplices forms a (finite) Euclidean
simplicial complex if the following two conditions hold:

1. Σ is closed: for each simplex σ ∈ Σ, all faces of σ are also in Σ.
2. The intersection σi ∩σj of any two simplices σi ,σj ∈ Σ is either

empty or is a face of both σi and σj .

• Any subset K′ ⊂ K that is itself a simplicial complex is called a
subcomplex of K.

• In particular, for any nonnegative integer k , the subset K(k) ⊂ K
consisting of all simplices of dimension less than or equal to k is
a subcomplex, called the k -skeleton of K.

• The 0-skeleton of K is called a vertex set of K and denoted V (K).
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Euclidean simplicial complex
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Topological relations
For a p-simplex σp in a simplicial complex K we define the following
topological relations:

• for p > q, the boundary relation Bp,q(σp) is the set of all q-faces
of σp:

Bp,q(σ
p) = filterq{σ ∈ K : vert(σ)⊂ vert(σ

p)},

• for p < q, the coboundary relation Cp,q(σp) is the set of all
q-simplices that have σp as a face:

Cp,q(σ
p) = filterq{σ ∈ K : vert(σ

p)⊂ vert(σ)},

• for p > 0, the adjacency relation Ap(σp) is the set of all
p-simplices, which are (p−1)-adjacent to σp (which means
those simplices, that share a (p−1)-face with σp):

Ap(σ
p) = filterp{σ ∈ K : |vert(σ

p)∩vert(σ)|= p},
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Star

Definition (star)

We define the star of a simplex σ as a set of all the simplices in K,
which have σ as a face:

st(σ
p) = {σ ∈ K : vert(σ

p)⊂ vert(σ)}=
n⋃

q=p+1

Cp,q(σ
p).

For the sake of convenience, we also define a star of an arbitrary
subset Σ of K, as the union of the stars of all simplices in Σ:

st(Σ) =
⋃

σi∈Σ

st(σi ).

M. K. Misztal Simplicial Complexes: Theory and Implementation



Theory Meshes Implementation

Star
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Closure

Definition (closure)

We define the closure of a simplex σp ∈ K as a set

cl(σ
p) =

p⋃
q=0

Bp,q(σ
p).

The closure of a simplex set Σ⊂ K is expressed as a set

cl(Σ) =
⋃

σi∈Σ

cl(σi ).

Equivalently, we can define the closure of a simplex σ ∈ K (simplex
set Σ⊂ K) as the smallest subcomplex of K containing σ

(including Σ).

M. K. Misztal Simplicial Complexes: Theory and Implementation



Theory Meshes Implementation

Closure
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Link

Definition (link)

The link of a simplex σ is defined as the set of all the the simplices in
the closure of the star of σ , which do not share a face with σ :

lk(σ) = cl(st(σ))− st(cl(σ)).

It can be proven that for every simplex σ ∈ K, lk(σ) is a subcomplex.
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Link
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Carrier

Definition
The carrier ‖K‖ of a simplicial complex K (also called the polyhedron
‖K‖) is a subset of En defined by the union, as point sets, of all the
simplices in K.

Definition
For each point v ∈ ‖K‖ there exists exactly one simplex σ ∈ K
containing v in its relative interior. This simplex is denoted by supp(v)
and called the support of the point v .
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Manifoldness

Definition (notion of manifoldness)

We say that a point v ∈ A⊂ En is p-manifold if there exists a
neighbourhood U of v such that A∩U is homeomorphic to Rp or
R(p−1)× (0,+∞). Otherwise we call v non-manifold.

We say that a simplex σ ∈ K is p-manifold, if every point of the relative
interior of this simplex is p-manifold with regard to the carrier of K.
E.g. obviously each n-simplex is n-manifold, each (n−1)-simplex is
n-manifold if it is a face of at least one n-simplex, etc.

We also say that an n-dimensional simplicial complex K in En is
manifold, if each of its simplices is n-manifold.
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Manifoldness
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Orientations

We introduce the following equivalence relation in the set Pσ of all
orderings (vi1 , . . . ,vip+1) of the vertices of σ = 〈v1, . . . ,vp+1〉:

(vi1 , . . . ,vip+1)∼ (vπ(i1), . . . ,vπ(ip+1))

iff π : {1,2, . . . ,p + 1} −→ {1,2, . . . ,p + 1} is an even permutation
operator.

We call each element of the quotient set Oσ = Pσ/∼ an orientation of
a simplex σ .

If p > 0, |Oσ |= 2, meaning that there are two possible orientations for
any simplex defined on a set of p + 1 points from En.
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Oriented volume

We define an oriented volume of σ = [v1, . . . ,vp+1]

V (σ) = V (v1, . . . ,vp+1)

=
1
p!

det(v1−v2,v2−v3, . . . ,vp−vp+1,vp+1−v1).

It can be proven, that for an even permutation operator π

V (vπ(1), . . . ,vπ(p+1)) = V (v1, . . . ,vp+1),

and for an odd permutation operator π ′

V (vπ ′(1), . . . ,vπ ′(p+1)) =−V (v1, . . . ,vp+1),
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Natural and induced orientation

Definition (natural orientation)

The orientation of σ , for which V (σ) > 0 is called the natural
orientation.

Definition (induced orientation)

The p-simplex σp = [v1,v2, . . . ,vp+1] determines an orientation of
each of its (p−1)-faces, called the induced orientation, by the
following rule: the induced orientation on the face
σ

p−1
i = 〈v1, . . . ,vi−1,vi+1, . . . ,vp+1〉 is defined to be

(−1)i+1[v1, . . . ,vi−1,vi+1, . . . ,vp+1].
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Consistency

• Let K be an n-dimensional simplicial complex in which every
(n−1)-simplex is a face of no more than two n-simplices.

• If σn
i ,σ

n
j ∈ K are two n-simplices that share an (n−1)-face σn−1,

we say that orientations of σn
i and σn

j are consistent if they
induce opposite orientations on σn−1.

• An orientation of K is a choice of orientation of each n-simplex in
such a way that any two simplices that interesect in an
(n−1)-face are consistently oriented.

• If a complex K admits an orientation, it is said to be orientable.
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Triangle meshes

Definition (triangle mesh)

A dimension 2 simplicial complex K⊂ En (where n ≥ 2), such that
every 0 or 1-simplex σ ∈ K is a face of a 2-simplex σ2 ∈ K is called a
triangle mesh.

Triangle meshes inherit the notions of manifoldness and orientability
from simplicial complexes.
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Triangle mesh operations

Triangle mesh operations include:

• smoothing: displacing vertices without changing connectivity,
performend in order to improve mesh quality;

• edge flips: mesh reconnection without changing vertex
placement;

• edge splits: introducing a new vertex on an edge;
• face splits: introducing a new vertex on a face;
• edge collapse: removing an edge and its adjacent triangles;
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Edge flip
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Edge split
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Face split
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Edge collapse
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Tetrahedral meshes

Definition (tetrahedral mesh)

A dimension 3 simplicial complex K⊂ En (where n ≥ 3), such that
every 0, 1 or 2-simplex σ ∈ K is a face of a 3-simplex σ3 ∈ K is called
a tetrahedral mesh.

Tetrahedral meshes inherit the notions of manifoldness and
orientability from simplicial complexes.

Triangle mesh operations generalize (although not always easily) to
tetrahedral meshes.
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Tetrahedral mesh
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Data structures

• The main purpose of data structures representing a simplicial
complex K is to store data associated with simplices in K.

• Depending on the purpose, not all of the simplex types might be
represented in the data structure (for example: indexed face set,
for simplicial complexes of dimension 2, with no dangling edges).

• If want to ensure efficient traversal, incidence information has to
be stored together with the simplices.

• Examples include: quad-edge, half-edge (for 2-manifold
triangular meshes).
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Incidence simplicial data structure

• The incidence simplicial (IS) data structure is a
dimension-independent, compact data structure designed for
representing arbitrary simplicial complexes K.

• Each simplex in K has its representation in IS data structure.
• We store with each p-simplex σp ∈ K (for p > 1) the unordered

set of handles to its p + 1 (p−1)-dimensional faces
σ

p−1
1 , . . . ,σp−1

p+1 (the boundary relation Bp,p−1(σp)).

• In order to make the traversal efficient, partial coboundary
relation C∗p,p+1(σp) is also stored with every p-simplex σp ∈ K, for
p < n.

• Partial coboundary relation C∗p,p+1(σp) consists of
(p + 1)-simplices from st(σp) connecting σp with its link, one per
each connected component in lk(σp).
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Our implementation

• Our implementation of the IS data structure is restricted to
simplicial complexes of dimension three or less.

• Our implementation is orientation-aware: we identify an oriented
simplex σp with an ordered tuple of its (p−1)-faces:[

σ
p−1
1 , . . . ,σp−1

p+1

]
,

which implies:

σ
p =

[
vert
(
σ

p)/vert
(
σ

p−1
1

)
, . . . ,vert

(
σ

p)/vert
(
σ

p−1
p+1

)]
,

where:

vert
(
σ

d)=
d+1⋃
i=1

vert
(
σ

d−1
i

)
,

M. K. Misztal Simplicial Complexes: Theory and Implementation



Theory Meshes Implementation

Our implementation

• Our implementation of the IS data structure is restricted to
simplicial complexes of dimension three or less.

• Our implementation is orientation-aware: we identify an oriented
simplex σp with an ordered tuple of its (p−1)-faces:[

σ
p−1
1 , . . . ,σp−1

p+1

]
,

which implies:

σ
p =

[
vert
(
σ

p)/vert
(
σ

p−1
1

)
, . . . ,vert

(
σ

p)/vert
(
σ

p−1
p+1

)]
,

where:

vert
(
σ

d)=
d+1⋃
i=1

vert
(
σ

d−1
i

)
,

M. K. Misztal Simplicial Complexes: Theory and Implementation



Theory Meshes Implementation

Our implemetation

It can be seen that:
• C∗2,3(σ2) = C2,3(σ2),

• if σp (p < 2) is 3-manifold, then |C∗p,p+1(σp)|= 1.
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Operations

The operations for traversal and manipulation of the simplicial
complex include:

• star – evaluation of the star of a simplex;
• closure – evaluation of the closure of a simplex or a set of

simplices;
• link – evaluation of the link of a simplex;
• boundary – evaluation of the boundary of the simplex;
• orient faces consistently/oppositely – enforcing a

consistent/opposite orientation on all (p−1)-faces of a p-simplex
σp;

• orient co-faces consistently/oppositely – enforcing a
consistent/opposite orientation on all (p + 1)-simplices having a
given p-simplex σp as a face;
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