Simplicial Complexes: Theory and Implementation

Marek K. Misztal

Informatics and Mathematical Modelling, Technical University of Denmark
mkm@imm.dtu.dk

DSC 2011 Workshop

Kgs. Lyngby, 25th August 2011

Affine independence

Definition (affine independce)

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}$ be points in an n-dimensional Euclidean space E^{n}. We call them affinely dependent if

$$
\left(\exists \mu_{1}, \ldots, \mu_{p+1} \in \mathbb{R}\right) \sum_{i=1}^{p+1} \mu_{i}=1 \wedge \sum_{i=1}^{p+1} \mu_{i} \mathbf{v}_{i}=0
$$

Otherwise, we call them affinely independent.

Examples:

- three non-colinear points in E^{2} are affinely independent;
- four non-coplanar points in E^{3} are affinely independent;

Simplex

Definition (Euclidean simplex)

Having $p+1$ affinely independent points $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p+1} \in E^{n}$, an Euclidean simplex $\sigma=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}\right\rangle$ is a set of points given by a formula:

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{p+1} \mathbf{v}_{p+1}
$$

where $\alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1$ (σ is the convex hull of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}$).

Simplex

Definition (Euclidean simplex)

Having $p+1$ affinely independent points $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p+1} \in E^{n}$, an Euclidean simplex $\sigma=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}\right\rangle$ is a set of points given by a formula:

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{p+1} \mathbf{v}_{p+1}
$$

where $\alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1$ (σ is the convex hull of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}$).

- σ is a closed set in E^{n}.

Simplex

Definition (Euclidean simplex)

Having $p+1$ affinely independent points $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p+1} \in E^{n}$, an Euclidean simplex $\sigma=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}\right\rangle$ is a set of points given by a formula:

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{p+1} \mathbf{v}_{p+1}
$$

where $\alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1$ (σ is the convex hull of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}$).

- σ is a closed set in E^{n}.
- p is the dimension of σ (equivalently σ is an Euclidean p-simplex).

Simplices

We call a 0-simplex a vertex, a 1-simplex an edge, a 2 -simplex a face and a 3 -simplex a tetrahedron.

Faces

Definition (vertex, q-face)

We call each point \mathbf{v}_{i} a vertex of σ, and each simplex $\left\langle\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{q+1}}\right\rangle$ ($0 \leq q \leq p, 1 \leq i_{k} \leq p+1$) a q-face of σ (or simply a face of σ, if no ambiguity arises).

Faces

Definition (vertex, q-face)

We call each point \mathbf{v}_{i} a vertex of σ, and each simplex $\left\langle\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{q+1}}\right\rangle$ ($0 \leq q \leq p, 1 \leq i_{k} \leq p+1$) a q-face of σ (or simply a face of σ, if no ambiguity arises).

- We also call all the $(p-1)$-faces of a p-simplex σ^{p} its boundary faces.

Faces

Definition (vertex, q-face)

We call each point \mathbf{v}_{i} a vertex of σ, and each simplex $\left\langle\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{q+1}}\right\rangle$ ($0 \leq q \leq p, 1 \leq i_{k} \leq p+1$) a q-face of σ (or simply a face of σ, if no ambiguity arises).

- We also call all the $(p-1)$-faces of a p-simplex σ^{p} its boundary faces.
- The faces of σ that are not equal to σ itself are called its proper faces.

Faces

Definition (vertex, q-face)

We call each point \mathbf{v}_{i} a vertex of σ, and each simplex $\left\langle\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{q+1}}\right\rangle$ ($0 \leq q \leq p, 1 \leq i_{k} \leq p+1$) a q-face of σ (or simply a face of σ, if no ambiguity arises).

- We also call all the $(p-1)$-faces of a p-simplex σ^{p} its boundary faces.
- The faces of σ that are not equal to σ itself are called its proper faces.
- The union of all the boundary faces of a simplex σ is called the boundary of σ.

Simplex sets

- For arbitrary, finite set of simplices Σ we define its dimension, as the maximum dimension of the simplices in Σ :

$$
\operatorname{dim}(\Sigma)=\max \{\operatorname{dim}(\sigma): \sigma \in \Sigma\}
$$

Simplex sets

- For arbitrary, finite set of simplices Σ we define its dimension, as the maximum dimension of the simplices in Σ :

$$
\operatorname{dim}(\Sigma)=\max \{\operatorname{dim}(\sigma): \sigma \in \Sigma\}
$$

- We also define a k-subset of Σ as a set of all k-simplices in Σ :

$$
\operatorname{filter}_{k}(\Sigma)=\left\{\sigma_{i} \in \Sigma: \operatorname{dim}\left(\sigma_{i}\right)=k\right\}
$$

Euclidean simplicial complex

Definition (Euclidean simplicial complex)

A finite set Σ of Euclidean simplices forms a (finite) Euclidean simplicial complex if the following two conditions hold:

1. Σ is closed: for each simplex $\sigma \in \Sigma$, all faces of σ are also in Σ.
2. The intersection $\sigma_{i} \cap \sigma_{j}$ of any two simplices $\sigma_{i}, \sigma_{j} \in \Sigma$ is either empty or is a face of both σ_{i} and σ_{j}.

Euclidean simplicial complex

Definition (Euclidean simplicial complex)

A finite set Σ of Euclidean simplices forms a (finite) Euclidean simplicial complex if the following two conditions hold:

1. Σ is closed: for each simplex $\sigma \in \Sigma$, all faces of σ are also in Σ.
2. The intersection $\sigma_{i} \cap \sigma_{j}$ of any two simplices $\sigma_{i}, \sigma_{j} \in \Sigma$ is either empty or is a face of both σ_{i} and σ_{j}.

- Any subset $\mathrm{K}^{\prime} \subset \mathrm{K}$ that is itself a simplicial complex is called a subcomplex of K .

Euclidean simplicial complex

Definition (Euclidean simplicial complex)

A finite set Σ of Euclidean simplices forms a (finite) Euclidean simplicial complex if the following two conditions hold:

1. Σ is closed: for each simplex $\sigma \in \Sigma$, all faces of σ are also in Σ.
2. The intersection $\sigma_{i} \cap \sigma_{j}$ of any two simplices $\sigma_{i}, \sigma_{j} \in \Sigma$ is either empty or is a face of both σ_{i} and σ_{j}.

- Any subset $\mathrm{K}^{\prime} \subset \mathrm{K}$ that is itself a simplicial complex is called a subcomplex of K .
- In particular, for any nonnegative integer k, the subset $\mathrm{K}^{(k)} \subset \mathrm{K}$ consisting of all simplices of dimension less than or equal to k is a subcomplex, called the k-skeleton of K .

Euclidean simplicial complex

Definition (Euclidean simplicial complex)

A finite set Σ of Euclidean simplices forms a (finite) Euclidean simplicial complex if the following two conditions hold:

1. Σ is closed: for each simplex $\sigma \in \Sigma$, all faces of σ are also in Σ.
2. The intersection $\sigma_{i} \cap \sigma_{j}$ of any two simplices $\sigma_{i}, \sigma_{j} \in \Sigma$ is either empty or is a face of both σ_{i} and σ_{j}.

- Any subset $\mathrm{K}^{\prime} \subset \mathrm{K}$ that is itself a simplicial complex is called a subcomplex of K .
- In particular, for any nonnegative integer k, the subset $\mathrm{K}^{(k)} \subset \mathrm{K}$ consisting of all simplices of dimension less than or equal to k is a subcomplex, called the k-skeleton of K .
- The 0 -skeleton of K is called a vertex set of K and denoted $V(\mathrm{~K})$.

Euclidean simplicial complex

Topological relations

For a p-simplex σ^{p} in a simplicial complex K we define the following topological relations:

Topological relations

For a p-simplex σ^{p} in a simplicial complex K we define the following topological relations:

- for $p>q$, the boundary relation $B_{p, q}\left(\sigma^{p}\right)$ is the set of all q-faces of σ^{p} :

$$
B_{p, q}\left(\sigma^{p}\right)=\operatorname{filter}_{q}\left\{\sigma \in \mathrm{~K}: \operatorname{vert}(\sigma) \subset \operatorname{vert}\left(\sigma^{p}\right)\right\},
$$

Topological relations

For a p-simplex σ^{p} in a simplicial complex K we define the following topological relations:

- for $p>q$, the boundary relation $B_{p, q}\left(\sigma^{p}\right)$ is the set of all q-faces of σ^{p} :

$$
B_{p, q}\left(\sigma^{p}\right)=\operatorname{filter}_{q}\left\{\sigma \in \mathrm{~K}: \operatorname{vert}(\sigma) \subset \operatorname{vert}\left(\sigma^{p}\right)\right\},
$$

- for $p<q$, the coboundary relation $C_{p, q}\left(\sigma^{p}\right)$ is the set of all q-simplices that have σ^{p} as a face:

$$
C_{p, q}\left(\sigma^{p}\right)=\operatorname{filter}_{q}\left\{\sigma \in \mathrm{~K}: \operatorname{vert}\left(\sigma^{p}\right) \subset \operatorname{vert}(\sigma)\right\},
$$

Topological relations

For a p-simplex σ^{p} in a simplicial complex K we define the following topological relations:

- for $p>q$, the boundary relation $B_{p, q}\left(\sigma^{p}\right)$ is the set of all q-faces of σ^{p} :

$$
B_{p, q}\left(\sigma^{p}\right)=\operatorname{filter}_{q}\left\{\sigma \in \mathrm{~K}: \operatorname{vert}(\sigma) \subset \operatorname{vert}\left(\sigma^{p}\right)\right\},
$$

- for $p<q$, the coboundary relation $C_{p, q}\left(\sigma^{p}\right)$ is the set of all q-simplices that have σ^{p} as a face:

$$
C_{p, q}\left(\sigma^{p}\right)=\operatorname{filter}_{q}\left\{\sigma \in \mathrm{~K}: \operatorname{vert}\left(\sigma^{p}\right) \subset \operatorname{vert}(\sigma)\right\},
$$

- for $p>0$, the adjacency relation $A_{p}\left(\sigma^{p}\right)$ is the set of all p-simplices, which are ($p-1$)-adjacent to σ^{p} (which means those simplices, that share a $(p-1)$-face with $\left.\sigma^{p}\right)$:

$$
A_{p}\left(\sigma^{p}\right)=\operatorname{filter}_{p}\left\{\sigma \in \mathrm{~K}:\left|\operatorname{vert}\left(\sigma^{p}\right) \cap \operatorname{vert}(\sigma)\right|=p\right\}
$$

Star

Definition (star)

We define the star of a simplex σ as a set of all the simplices in K , which have σ as a face:

$$
\operatorname{st}\left(\sigma^{p}\right)=\left\{\sigma \in \mathrm{K}: \operatorname{vert}\left(\sigma^{p}\right) \subset \operatorname{vert}(\sigma)\right\}=\bigcup_{q=p+1}^{n} C_{p, q}\left(\sigma^{p}\right)
$$

For the sake of convenience, we also define a star of an arbitrary subset Σ of K , as the union of the stars of all simplices in Σ :

$$
\operatorname{st}(\Sigma)=\bigcup_{\sigma_{i} \in \Sigma} \operatorname{st}\left(\sigma_{i}\right)
$$

Star

Closure

Definition (closure)

We define the closure of a simplex $\sigma^{p} \in \mathrm{~K}$ as a set

$$
\operatorname{cl}\left(\sigma^{p}\right)=\bigcup_{q=0}^{p} B_{p, q}\left(\sigma^{p}\right)
$$

The closure of a simplex set $\Sigma \subset \mathrm{K}$ is expressed as a set

$$
\operatorname{cl}(\Sigma)=\bigcup_{\sigma_{i} \in \Sigma} \operatorname{cl}\left(\sigma_{i}\right)
$$

Equivalently, we can define the closure of a simplex $\sigma \in \mathrm{K}$ (simplex set $\Sigma \subset K$) as the smallest subcomplex of K containing σ (including Σ).

Closure

Link

Definition (link)

The link of a simplex σ is defined as the set of all the the simplices in the closure of the star of σ, which do not share a face with σ :

$$
\mathrm{lk}(\sigma)=\operatorname{cl}(\operatorname{st}(\sigma))-\operatorname{st}(\operatorname{cl}(\sigma))
$$

It can be proven that for every simplex $\sigma \in \mathrm{K}, \operatorname{lk}(\sigma)$ is a subcomplex.

Link

Carrier

Definition

The carrier ||K|| of a simplicial complex K (also called the polyhedron $\|\mathrm{K}\|)$ is a subset of E^{n} defined by the union, as point sets, of all the simplices in K.

Definition

For each point $v \in\|\mathrm{~K}\|$ there exists exactly one simplex $\sigma \in \mathrm{K}$ containing v in its relative interior. This simplex is denoted by $\operatorname{supp}(v)$ and called the support of the point v.

Manifoldness

Definition (notion of manifoldness)

We say that a point $\mathbf{v} \in A \subset E^{n}$ is p-manifold if there exists a neighbourhood U of v such that $A \cap U$ is homeomorphic to \mathbb{R}^{p} or $\mathbb{R}^{(p-1)} \times(0,+\infty)$. Otherwise we call \mathbf{v} non-manifold.

We say that a simplex $\sigma \in \mathrm{K}$ is p-manifold, if every point of the relative interior of this simplex is p-manifold with regard to the carrier of K . E.g. obviously each n-simplex is n-manifold, each ($n-1$)-simplex is n-manifold if it is a face of at least one n-simplex, etc.

We also say that an n-dimensional simplicial complex K in E^{n} is manifold, if each of its simplices is n-manifold.

Manifoldness

Orientations

We introduce the following equivalence relation in the set P_{σ} of all orderings $\left(\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{p+1}}\right)$ of the vertices of $\sigma=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}\right\rangle$:

$$
\left(\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{p+1}}\right) \sim\left(\mathbf{v}_{\pi\left(i_{1}\right)}, \ldots, \mathbf{v}_{\pi\left(i_{p+1}\right)}\right)
$$

iff $\pi:\{1,2, \ldots, p+1\} \longrightarrow\{1,2, \ldots, p+1\}$ is an even permutation operator.

We call each element of the quotient set $\mathscr{O}_{\sigma}=P_{\sigma} / \sim$ an orientation of a simplex σ.

If $p>0,\left|\mathscr{O}_{\sigma}\right|=2$, meaning that there are two possible orientations for any simplex defined on a set of $p+1$ points from E^{n}.

Oriented volume

We define an oriented volume of $\sigma=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}\right]$

$$
\begin{aligned}
\mathscr{V}(\sigma) & =\mathscr{V}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}\right) \\
& =\frac{1}{p!} \operatorname{det}\left(\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{2}-\mathbf{v}_{3}, \ldots, \mathbf{v}_{p}-\mathbf{v}_{p+1}, \mathbf{v}_{p+1}-\mathbf{v}_{1}\right) .
\end{aligned}
$$

It can be proven, that for an even permutation operator π

$$
\mathscr{V}\left(\mathbf{v}_{\pi(1)}, \ldots, \mathbf{v}_{\pi(p+1)}\right)=\mathscr{V}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}\right)
$$

and for an odd permutation operator π^{\prime}

$$
\mathscr{V}\left(\mathbf{v}_{\pi^{\prime}(1)}, \ldots, \mathbf{v}_{\pi^{\prime}(p+1)}\right)=-\mathscr{V}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p+1}\right)
$$

Natural and induced orientation

Definition (natural orientation)

The orientation of σ, for which $\mathscr{V}(\sigma)>0$ is called the natural orientation.

Definition (induced orientation)

The p-simplex $\sigma^{p}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p+1}\right]$ determines an orientation of each of its $(p-1)$-faces, called the induced orientation, by the following rule: the induced orientation on the face $\sigma_{i}^{p-1}=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{p+1}\right\rangle$ is defined to be $(-1)^{i+1}\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{p+1}\right]$.

Consistency

- Let K be an n-dimensional simplicial complex in which every ($n-1$)-simplex is a face of no more than two n-simplices.

Consistency

- Let K be an n-dimensional simplicial complex in which every ($n-1$)-simplex is a face of no more than two n-simplices.
- If $\sigma_{i}^{n}, \sigma_{j}^{n} \in \mathrm{~K}$ are two n-simplices that share an $(n-1)$-face σ^{n-1}, we say that orientations of σ_{i}^{n} and σ_{j}^{n} are consistent if they induce opposite orientations on σ^{n-1}.

Consistency

- Let K be an n-dimensional simplicial complex in which every ($n-1$)-simplex is a face of no more than two n-simplices.
- If $\sigma_{i}^{n}, \sigma_{j}^{n} \in \mathrm{~K}$ are two n-simplices that share an ($n-1$)-face σ^{n-1}, we say that orientations of σ_{i}^{n} and σ_{j}^{n} are consistent if they induce opposite orientations on σ^{n-1}.
- An orientation of K is a choice of orientation of each n-simplex in such a way that any two simplices that interesect in an ($n-1$)-face are consistently oriented.

Consistency

- Let K be an n-dimensional simplicial complex in which every ($n-1$)-simplex is a face of no more than two n-simplices.
- If $\sigma_{i}^{n}, \sigma_{j}^{n} \in \mathrm{~K}$ are two n-simplices that share an ($n-1$)-face σ^{n-1}, we say that orientations of σ_{i}^{n} and σ_{j}^{n} are consistent if they induce opposite orientations on σ^{n-1}.
- An orientation of K is a choice of orientation of each n-simplex in such a way that any two simplices that interesect in an ($n-1$)-face are consistently oriented.
- If a complex K admits an orientation, it is said to be orientable.

Triangle meshes

Definition (triangle mesh)

A dimension 2 simplicial complex $K \subset E^{n}$ (where $n \geq 2$), such that every 0 or 1 -simplex $\sigma \in \mathrm{K}$ is a face of a 2 -simplex $\sigma^{2} \in \mathrm{~K}$ is called a triangle mesh.

Triangle meshes inherit the notions of manifoldness and orientability from simplicial complexes.

Triangle mesh operations

Triangle mesh operations include:

Triangle mesh operations

Triangle mesh operations include:

- smoothing: displacing vertices without changing connectivity, performend in order to improve mesh quality;

Triangle mesh operations

Triangle mesh operations include:

- smoothing: displacing vertices without changing connectivity, performend in order to improve mesh quality;
- edge flips: mesh reconnection without changing vertex placement;

Triangle mesh operations

Triangle mesh operations include:

- smoothing: displacing vertices without changing connectivity, performend in order to improve mesh quality;
- edge flips: mesh reconnection without changing vertex placement;
- edge splits: introducing a new vertex on an edge;

Triangle mesh operations

Triangle mesh operations include:

- smoothing: displacing vertices without changing connectivity, performend in order to improve mesh quality;
- edge flips: mesh reconnection without changing vertex placement;
- edge splits: introducing a new vertex on an edge;
- face splits: introducing a new vertex on a face;

Triangle mesh operations

Triangle mesh operations include:

- smoothing: displacing vertices without changing connectivity, performend in order to improve mesh quality;
- edge flips: mesh reconnection without changing vertex placement;
- edge splits: introducing a new vertex on an edge;
- face splits: introducing a new vertex on a face;
- edge collapse: removing an edge and its adjacent triangles;

Edge flip

Edge split

Face split

Edge collapse

Tetrahedral meshes

Definition (tetrahedral mesh)

A dimension 3 simplicial complex $\mathrm{K} \subset E^{n}$ (where $n \geq 3$), such that every 0 , 1 or 2 -simplex $\sigma \in \mathrm{K}$ is a face of a 3 -simplex $\sigma^{3} \in \mathrm{~K}$ is called a tetrahedral mesh.

Tetrahedral meshes inherit the notions of manifoldness and orientability from simplicial complexes.

Triangle mesh operations generalize (although not always easily) to tetrahedral meshes.

Tetrahedral mesh

Data structures

- The main purpose of data structures representing a simplicial complex K is to store data associated with simplices in K .

Data structures

- The main purpose of data structures representing a simplicial complex K is to store data associated with simplices in K .
- Depending on the purpose, not all of the simplex types might be represented in the data structure (for example: indexed face set, for simplicial complexes of dimension 2, with no dangling edges).

Data structures

- The main purpose of data structures representing a simplicial complex K is to store data associated with simplices in K .
- Depending on the purpose, not all of the simplex types might be represented in the data structure (for example: indexed face set, for simplicial complexes of dimension 2, with no dangling edges).
- If want to ensure efficient traversal, incidence information has to be stored together with the simplices.

Data structures

- The main purpose of data structures representing a simplicial complex K is to store data associated with simplices in K .
- Depending on the purpose, not all of the simplex types might be represented in the data structure (for example: indexed face set, for simplicial complexes of dimension 2, with no dangling edges).
- If want to ensure efficient traversal, incidence information has to be stored together with the simplices.
- Examples include: quad-edge, half-edge (for 2-manifold triangular meshes).

Incidence simplicial data structure

- The incidence simplicial (IS) data structure is a dimension-independent, compact data structure designed for representing arbitrary simplicial complexes K.

Incidence simplicial data structure

- The incidence simplicial (IS) data structure is a dimension-independent, compact data structure designed for representing arbitrary simplicial complexes K.
- Each simplex in K has its representation in IS data structure.

Incidence simplicial data structure

- The incidence simplicial (IS) data structure is a dimension-independent, compact data structure designed for representing arbitrary simplicial complexes K.
- Each simplex in K has its representation in IS data structure.
- We store with each p-simplex $\sigma^{p} \in \mathrm{~K}$ (for $p>1$) the unordered set of handles to its $p+1(p-1)$-dimensional faces $\sigma_{1}^{p-1}, \ldots, \sigma_{p+1}^{p-1}$ (the boundary relation $B_{p, p-1}\left(\sigma^{p}\right)$).

Incidence simplicial data structure

- The incidence simplicial (IS) data structure is a dimension-independent, compact data structure designed for representing arbitrary simplicial complexes K.
- Each simplex in K has its representation in IS data structure.
- We store with each p-simplex $\sigma^{p} \in \mathrm{~K}$ (for $p>1$) the unordered set of handles to its $p+1(p-1)$-dimensional faces $\sigma_{1}^{p-1}, \ldots, \sigma_{p+1}^{p-1}$ (the boundary relation $B_{p, p-1}\left(\sigma^{p}\right)$).
- In order to make the traversal efficient, partial coboundary relation $C_{p, p+1}^{*}\left(\sigma^{p}\right)$ is also stored with every p-simplex $\sigma^{p} \in \mathrm{~K}$, for $p<n$.

Incidence simplicial data structure

- The incidence simplicial (IS) data structure is a dimension-independent, compact data structure designed for representing arbitrary simplicial complexes K.
- Each simplex in K has its representation in IS data structure.
- We store with each p-simplex $\sigma^{p} \in \mathrm{~K}$ (for $p>1$) the unordered set of handles to its $p+1(p-1)$-dimensional faces $\sigma_{1}^{p-1}, \ldots, \sigma_{p+1}^{p-1}$ (the boundary relation $B_{p, p-1}\left(\sigma^{p}\right)$).
- In order to make the traversal efficient, partial coboundary relation $C_{p, p+1}^{*}\left(\sigma^{p}\right)$ is also stored with every p-simplex $\sigma^{p} \in \mathrm{~K}$, for $p<n$.
- Partial coboundary relation $C_{p, p+1}^{*}\left(\sigma^{p}\right)$ consists of ($p+1$)-simplices from st $\left(\sigma^{p}\right)$ connecting σ^{p} with its link, one per each connected component in $\operatorname{lk}\left(\sigma^{\rho}\right)$.

Our implementation

- Our implementation of the IS data structure is restricted to simplicial complexes of dimension three or less.

Our implementation

- Our implementation of the IS data structure is restricted to simplicial complexes of dimension three or less.
- Our implementation is orientation-aware: we identify an oriented simplex σ^{p} with an ordered tuple of its ($p-1$)-faces:

$$
\left[\sigma_{1}^{p-1}, \ldots, \sigma_{p+1}^{p-1}\right]
$$

which implies:

$$
\sigma^{p}=\left[\operatorname{vert}\left(\sigma^{p}\right) / \operatorname{vert}\left(\sigma_{1}^{p-1}\right), \ldots, \operatorname{vert}\left(\sigma^{p}\right) / \operatorname{vert}\left(\sigma_{p+1}^{p-1}\right)\right],
$$

where:

$$
\operatorname{vert}\left(\sigma^{d}\right)=\bigcup_{i=1}^{d+1} \operatorname{vert}\left(\sigma_{i}^{d-1}\right)
$$

Our implemetation

It can be seen that:

- $C_{2,3}^{*}\left(\sigma^{2}\right)=C_{2,3}\left(\sigma^{2}\right)$,
- if $\sigma^{p}(p<2)$ is 3-manifold, then $\left|C_{p, p+1}^{*}\left(\sigma^{p}\right)\right|=1$.

Operations

The operations for traversal and manipulation of the simplicial complex include:

Operations

The operations for traversal and manipulation of the simplicial complex include:

- star - evaluation of the star of a simplex;

Operations

The operations for traversal and manipulation of the simplicial complex include:

- star - evaluation of the star of a simplex;
- closure - evaluation of the closure of a simplex or a set of simplices;

Operations

The operations for traversal and manipulation of the simplicial complex include:

- star - evaluation of the star of a simplex;
- closure - evaluation of the closure of a simplex or a set of simplices;
- link - evaluation of the link of a simplex;

Operations

The operations for traversal and manipulation of the simplicial complex include:

- star - evaluation of the star of a simplex;
- closure - evaluation of the closure of a simplex or a set of simplices;
- link - evaluation of the link of a simplex;
- boundary - evaluation of the boundary of the simplex;

Operations

The operations for traversal and manipulation of the simplicial complex include:

- star - evaluation of the star of a simplex;
- closure - evaluation of the closure of a simplex or a set of simplices;
- link - evaluation of the link of a simplex;
- boundary - evaluation of the boundary of the simplex;
- orient faces consistently/oppositely - enforcing a consistent/opposite orientation on all ($p-1$)-faces of a p-simplex σ^{p};

Operations

The operations for traversal and manipulation of the simplicial complex include:

- star - evaluation of the star of a simplex;
- closure - evaluation of the closure of a simplex or a set of simplices;
- link - evaluation of the link of a simplex;
- boundary - evaluation of the boundary of the simplex;
- orient faces consistently/oppositely - enforcing a consistent/opposite orientation on all ($p-1$)-faces of a p-simplex σ^{p};
- orient co-faces consistently/oppositely - enforcing a consistent/opposite orientation on all ($p+1$)-simplices having a given p-simplex σ^{p} as a face;

References

- J. M. Lee. Introduction to topological manifolds. 2000.

References

- J. M. Lee. Introduction to topological manifolds. 2000.
- L. de Floriani, A. Hui, D. Panozzo and D. Canino. A dimension-independent data structure for simplicial complexes. 2010.

References

- J. M. Lee. Introduction to topological manifolds. 2000.
- L. de Floriani, A. Hui, D. Panozzo and D. Canino. A dimension-independent data structure for simplicial complexes. 2010.
- M. K. Misztal. Deformable simplicial complexes. PhD thesis, 2010.

