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Affine independence

Definition (affine independce)

Let vy,...,Vp, 1 be points in an n-dimensional Euclidean space E".
We call them affinely dependent if

p+1 p+1
(3u17---a.up+1 ER) Z :uj: 1 A Z ‘U,,'V,‘ZO-
i=1 i=1

Otherwise, we call them affinely independent.

Examples:
e three non-colinear points in E2 are affinely independent;
« four non-coplanar points in E2 are affinely independent;

M. K. Misztal implicial Ci Theory and




Theory
08000

Simplex

Definition (Euclidean simplex)

Having p+ 1 affinely independent points v4,Va,...,V,,1 € E”, an
Euclidean simplex o = (v1,...,Vp.1) is a set of points given by a
formula:

V=0V1+...+0p1Vpi1,

where «; > 0, ¥; o = 1 (o is the convex hull of vy,...,vp1).
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Simplex

Definition (Euclidean simplex)

Having p+ 1 affinely independent points v4,Va,...,V,,1 € E”, an
Euclidean simplex o = (v1,...,Vp.1) is a set of points given by a
formula:

V=0V1+...+0p1Vpi1,

where «; > 0, ¥; o = 1 (o is the convex hull of vy,...,vp1).

e o is aclosed setin E".
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Simplex

Definition (Euclidean simplex)

Having p+ 1 affinely independent points v4,Va,...,V,,1 € E”, an
Euclidean simplex o = (v1,...,Vp.1) is a set of points given by a
formula:

V=0V1+...+0p1Vpi1,

where «; > 0, ¥; o = 1 (o is the convex hull of vy,...,vp1).

e o is aclosed setin E".

e pis the dimension of o (equivalently ¢ is an Euclidean
p-simplex).
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We call a 0-simplex a vertex, a 1-simplex an edge, a 2-simplex a face
and a 3-simplex a tetrahedron.
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We call each point v; a vertex of ¢, and each simplex (v;,..

Vigpa
(0<qg<p,1<ix<p+1)aqg-face of ¢ (or simply a face of o, |fqno
ambiguity arises).
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Faces

Definition (vertex, g-face)

We call each point v; a vertex of o, and each simplex (v;,, ... ,v,-q+1>
(0<g<p,1<ix<p+1)a g-face of o (or simply a face of o, if no
ambiguity arises).

e We also call all the (p— 1)-faces of a p-simplex o” its boundary
faces.
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Faces

Definition (vertex, g-face)

We call each point v; a vertex of o, and each simplex (v;,, ... ,v,-q+1>
(0<g<p,1<ix<p+1)a g-face of o (or simply a face of o, if no
ambiguity arises).

e We also call all the (p— 1)-faces of a p-simplex o” its boundary
faces.

o The faces of o that are not equal to o itself are called its proper
faces.
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Faces

Definition (vertex, g-face)

We call each point v; a vertex of o, and each simplex (v;,, ... ,v,-q+1>
(0<g<p,1<ix<p+1)a g-face of o (or simply a face of o, if no
ambiguity arises).

e We also call all the (p— 1)-faces of a p-simplex o” its boundary
faces.

o The faces of o that are not equal to o itself are called its proper
faces.

e The union of all the boundary faces of a simplex o is called the
boundary of c.
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o For arbitrary, finite set of simplices © we define its dimension, as
the maximum dimension of the simplices in X:

dim(X) = max{dim(c) : 6 € T}.
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Simplex sets

o For arbitrary, finite set of simplices © we define its dimension, as
the maximum dimension of the simplices in ¥:

dim(X) = max{dim(c): o € L }.
o We also define a k-subset of ¥ as a set of all k-simplices in x:

filtery(X) = {o; € X : dim(o;) = k}.
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Euclidean simplicial complex

Definition (Euclidean simplicial complex)
A finite set ¥ of Euclidean simplices forms a (finite) Euclidean
simplicial complex if the following two conditions hold:

1. ¥ is closed: for each simplex ¢ € ¥, all faces of ¢ are also in X.

2. The intersection o; M o; of any two simplices o}, c; € X is either
empty or is a face of both ¢; and o;.
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Euclidean simplicial complex

Definition (Euclidean simplicial complex)
A finite set ¥ of Euclidean simplices forms a (finite) Euclidean
simplicial complex if the following two conditions hold:

1. ¥ is closed: for each simplex ¢ € ¥, all faces of ¢ are also in X.

2. The intersection o; M o; of any two simplices o}, c; € X is either
empty or is a face of both ¢; and o;.

e Any subset K’ C K that is itself a simplicial complex is called a
subcomplex of K.
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Euclidean simplicial complex

Definition (Euclidean simplicial complex)
A finite set ¥ of Euclidean simplices forms a (finite) Euclidean
simplicial complex if the following two conditions hold:

1. ¥ is closed: for each simplex ¢ € ¥, all faces of ¢ are also in X.

2. The intersection o; M o; of any two simplices o}, c; € X is either
empty or is a face of both ¢; and o;.

e Any subset K’ C K that is itself a simplicial complex is called a
subcomplex of K.

« In particular, for any nonnegative integer k, the subset K(¥) ¢ K
consisting of all simplices of dimension less than or equal to k is
a subcomplex, called the k-skeleton of K.
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Euclidean simplicial complex

Definition (Euclidean simplicial complex)
A finite set ¥ of Euclidean simplices forms a (finite) Euclidean
simplicial complex if the following two conditions hold:

1. ¥ is closed: for each simplex ¢ € ¥, all faces of ¢ are also in X.

2. The intersection o; M o; of any two simplices o}, c; € X is either
empty or is a face of both ¢; and o;.

e Any subset K’ C K that is itself a simplicial complex is called a
subcomplex of K.

« In particular, for any nonnegative integer k, the subset K(¥) ¢ K
consisting of all simplices of dimension less than or equal to k is
a subcomplex, called the k-skeleton of K.

e The 0-skeleton of K is called a vertex set of K and denoted V(K).
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For a p-simplex o in a simplicial complex K we define the following
topological relations:
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Implementation

Topological relations

For a p-simplex o in a simplicial complex K we define the following
topological relations:

o for p > g, the boundary relation By, 4(c”) is the set of all g-faces
of oP:

Bp,q(0P) =filterq{c € K: vert(c) C vert(cP)},
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Topological relations

For a p-simplex o in a simplicial complex K we define the following
topological relations:

o for p > g, the boundary relation By, 4(c”) is the set of all g-faces
of oP:

Bp,q(0P) =filterq{c € K: vert(c) C vert(cP)},

o for p < q, the coboundary relation Cp 4(c”) is the set of all
g-simplices that have o” as a face:

Cp,q(0P) = filterq{c € K: vert(c”) C vert(o)},
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Topological relations

For a p-simplex o in a simplicial complex K we define the following
topological relations:

o for p > g, the boundary relation By, 4(c”) is the set of all g-faces
of oP:

Bp,q(0P) =filterq{c € K: vert(c) C vert(cP)},

o for p < q, the coboundary relation Cp 4(c”) is the set of all
g-simplices that have o” as a face:

Cp,q(0P) = filterq{c € K: vert(c”) C vert(o)},

e for p> 0, the adjacency relation A,(c®) is the set of all
p-simplices, which are (p— 1)-adjacent to o (which means
those simplices, that share a (p— 1)-face with o”):

Ap(cP) =filterp{c € K : |vert(c”) Nvert(c)| = p},
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Star

Definition (star)
We define the star of a simplex o as a set of all the simplices in K,
which have o as a face:

st(oP) = {o € K: vert(cP) C vert(o U Cp.q(c”).
g=p+1

For the sake of convenience, we also define a star of an arbitrary
subset X of K, as the union of the stars of all simplices in X:

st(X) = | st(oy).

(JISN
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Closure

Definition (closure)

We define the closure of a simplex o € K as a set

p
cl(6”) = (J Bpgq(c®).
q=0

The closure of a simplex set ¥ C K is expressed as a set

c(X) = U cl(o;).

ojcx

Equivalently, we can define the closure of a simplex ¢ € K (simplex
set ~ C K) as the smallest subcomplex of K containing o
(including X).
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Link

Definition (link)

The link of a simplex ¢ is defined as the set of all the the simplices in
the closure of the star of ¢, which do not share a face with o:

k(o) = cl(st(o)) —st(cl(o)).

It can be proven that for every simplex o € K, k(o) is a subcomplex.
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Carrier

Definition

The carrier ||K|| of a simplicial complex K (also called the polyhedron
|IK||) is a subset of E" defined by the union, as point sets, of all the
simplices in K.

Definition
For each point v € ||K|| there exists exactly one simplex o € K

containing v in its relative interior. This simplex is denoted by supp(v)
and called the support of the point v.
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Manifoldness

Definition (notion of manifoldness)

We say that a point v e A C E" is p-manifold if there exists a
neighbourhood U of v such that An U is homeomorphic to RP or
R(P=1) x (0, +20). Otherwise we call v non-manifold.

We say that a simplex ¢ € K is p-manifold, if every point of the relative
interior of this simplex is p-manifold with regard to the carrier of K.
E.g. obviously each n-simplex is n-manifold, each (n— 1)-simplex is
n-manifold if it is a face of at least one n-simplex, etc.

We also say that an n-dimensional simplicial complex K in E” is
manifold, if each of its simplices is n-manifold.
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Orientations

We introduce the following equivalence relation in the set P of all
orderings (vj,,... ,v,~p+1) of the vertices of o = (v4,...,Vp1):

(Vf1 PRER avip+1 ) ~ (vﬂ(ﬁ)v v 7V71,'(I'p+1))

iffr:{1,2,...,p0+1} — {1,2,...,p+ 1} is an even permutation
operator.

We call each element of the quotient set 0 = Ps/ ~ an orientation of
a simplex o.

If p>0, |0s| =2, meaning that there are two possible orientations for
any simplex defined on a set of p+ 1 points from E”.

M. K. Misztal implicial C Theory and




0e00

Oriented volume

We define an oriented volume of ¢ = [v1,...,Vpi1]
V(o) = V(V1,.--,Vp1)
= %det(w —V2,Vo—V3,...,Vp—Vp,1,Vpi1 —Vq).
It can be proven, that for an even permutation operator ©
Y (Va(tys - Vaps1)) = V' (V1,-. . Vpid),
and for an odd permutation operator 7’/

7/(Vﬂ/(1),...,vﬂl(p+1)) = —4//(V17...,Vp+1)7
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Natural and induced orientation

Definition (natural orientation)

The orientation of o, for which #'(c) > 0 is called the natural
orientation.

Definition (induced orientation)

The p-simplex 6” = [v4,V>,...,Vp, 1] determines an orientation of
each of its (p— 1)-faces, called the induced orientation, by the
following rule: the induced orientation on the face

0P = (Vi,...,Vj 1,Vjs1,...,Vpi1) is defined to be
j+1
(—1)’+ [V1,...,V,',1,V,'+1,...,Vp+1].
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¢ Let K be an n-dimensional simplicial complex in which every
(n—1)-simplex is a face of no more than two n-simplices.
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Consistency

¢ Let K be an n-dimensional simplicial complex in which every

(n—1)-simplex is a face of no more than two n-simplices.
e If o/, cj” € K are two n-simplices that share an (n—1)-face o',
we say that orientations of o/ and ;" are consistent if they

induce opposite orientations on ¢ 1.
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Consistency

¢ Let K be an n-dimensional simplicial complex in which every
(n—1)-simplex is a face of no more than two n-simplices.

e If o/, Gj” € K are two n-simplices that share an (n—1)-face o',
we say that orientations of o/ and ;" are consistent if they
induce opposite orientations on ¢ 1.

¢ An orientation of K is a choice of orientation of each n-simplex in
such a way that any two simplices that interesect in an
(n—1)-face are consistently oriented.
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Consistency

Let K be an n-dimensional simplicial complex in which every
(n—1)-simplex is a face of no more than two n-simplices.

If 67,0/ € K are two n-simplices that share an (n—1)-face o™ 1,
we say that orientations of o/ and ;" are consistent if they
induce opposite orientations on ¢ 1.

An orientation of K is a choice of orientation of each n-simplex in
such a way that any two simplices that interesect in an
(n—1)-face are consistently oriented.

If a complex K admits an orientation, it is said to be orientable.
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Triangle meshes

Definition (triangle mesh)

A dimension 2 simplicial complex K ¢ E" (where n > 2), such that
every 0 or 1-simplex ¢ € K is a face of a 2-simplex 62 € K is called a
triangle mesh.

Triangle meshes inherit the notions of manifoldness and orientability
from simplicial complexes.
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Triangle mesh operations include:
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Triangle mesh operations

Triangle mesh operations include:

¢ smoothing: displacing vertices without changing connectivity,
performend in order to improve mesh quality;
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Triangle mesh operations

Triangle mesh operations include:

¢ smoothing: displacing vertices without changing connectivity,
performend in order to improve mesh quality;

o edge flips: mesh reconnection without changing vertex
placement;
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Triangle mesh operations

Triangle mesh operations include:

¢ smoothing: displacing vertices without changing connectivity,
performend in order to improve mesh quality;

o edge flips: mesh reconnection without changing vertex
placement;

¢ edge splits: introducing a new vertex on an edge;
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Triangle mesh operations

Triangle mesh operations include:

¢ smoothing: displacing vertices without changing connectivity,
performend in order to improve mesh quality;

o edge flips: mesh reconnection without changing vertex
placement;

¢ edge splits: introducing a new vertex on an edge;
¢ face splits: introducing a new vertex on a face;
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Triangle mesh operations

Triangle mesh operations include:

smoothing: displacing vertices without changing connectivity,
performend in order to improve mesh quality;

edge flips: mesh reconnection without changing vertex
placement;

edge splits: introducing a new vertex on an edge;
face splits: introducing a new vertex on a face;
edge collapse: removing an edge and its adjacent triangles;
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Tetrahedral meshes

Definition (tetrahedral mesh)

A dimension 3 simplicial complex K C E" (where n > 3), such that
every 0, 1 or 2-simplex ¢ € K is a face of a 3-simplex o2 € K is called
a tetrahedral mesh.

Tetrahedral meshes inherit the notions of manifoldness and
orientability from simplicial complexes.

Triangle mesh operations generalize (although not always easily) to
tetrahedral meshes.
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e The main purpose of data structures representing a simplicial
complex K is to store data associated with simplices in K.
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Data structures

e The main purpose of data structures representing a simplicial
complex K is to store data associated with simplices in K.

¢ Depending on the purpose, not all of the simplex types might be
represented in the data structure (for example: indexed face set,
for simplicial complexes of dimension 2, with no dangling edges).
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Data structures

e The main purpose of data structures representing a simplicial
complex K is to store data associated with simplices in K.

¢ Depending on the purpose, not all of the simplex types might be
represented in the data structure (for example: indexed face set,
for simplicial complexes of dimension 2, with no dangling edges).

o |If want to ensure efficient traversal, incidence information has to
be stored together with the simplices.
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Data structures

The main purpose of data structures representing a simplicial
complex K is to store data associated with simplices in K.

Depending on the purpose, not all of the simplex types might be
represented in the data structure (for example: indexed face set,
for simplicial complexes of dimension 2, with no dangling edges).

If want to ensure efficient traversal, incidence information has to
be stored together with the simplices.

Examples include: quad-edge, half-edge (for 2-manifold
triangular meshes).
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Incidence simplicial data structure

e The incidence simplicial (IS) data structure is a
dimension-independent, compact data structure designed for
representing arbitrary simplicial complexes K.
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Incidence simplicial data structure

e The incidence simplicial (IS) data structure is a
dimension-independent, compact data structure designed for
representing arbitrary simplicial complexes K.

e Each simplex in K has its representation in IS data structure.
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Incidence simplicial data structure

e The incidence simplicial (IS) data structure is a
dimension-independent, compact data structure designed for
representing arbitrary simplicial complexes K.

e Each simplex in K has its representation in IS data structure.

o We store with each p-simplex o” € K (for p > 1) the unordered
set of handles to its p+1 (p— 1)-dimensional faces

of"',...,a5{ (the boundary relation By ,_1(cP)).
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Incidence simplicial data structure

The incidence simplicial (IS) data structure is a
dimension-independent, compact data structure designed for
representing arbitrary simplicial complexes K.

Each simplex in K has its representation in IS data structure.
We store with each p-simplex o € K (for p > 1) the unordered
set of handles to its p+1 (p— 1)-dimensional faces
of"',...,a5{ (the boundary relation By ,_1(cP)).

In order to make the traversal efficient, partial coboundary
relation C;’p . 1(oP) is also stored with every p-simplex c” € K, for
p<n.
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Incidence simplicial data structure

The incidence simplicial (IS) data structure is a
dimension-independent, compact data structure designed for
representing arbitrary simplicial complexes K.

Each simplex in K has its representation in IS data structure.
We store with each p-simplex o € K (for p > 1) the unordered
set of handles to its p+1 (p— 1)-dimensional faces
01”’1,...,05;11 (the boundary relation By 5_1(c®)).

In order to make the traversal efficient, partial coboundary
relation C;.p . 1(oP) is also stored with every p-simplex c” € K, for
p<n. '

Partial coboundary relation C; ,, {(o”) consists of
(p+1)-simplices from st(o”) connecting o with its link, one per
each connected component in lk(o”).
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o Our implementation of the IS data structure is restricted to
simplicial complexes of dimension three or less.
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Our implementation

Our implementation of the IS data structure is restricted to
simplicial complexes of dimension three or less.

Our implementation is orientation-aware: we identify an oriented
simplex of with an ordered tuple of its (p — 1)-faces:

{0p—17,..,65;”,
which implies:
of = {Vert(cp)/vert(ch),...,Vert(Gp)/vert(aﬁ’;j)}7

where:

vert(c?) = | J vert(c? "),
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It can be seen that:

o C35(0%) = Ca3(c?),

e if 6P (p < 2) is 3-manifold, then |C;7p+1 (oP)| =1.
_ Simplicial Complexes: Theory and Implementation
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complex include:

The operations for traversal and manipulation of the simplicial
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complex include:

The operations for traversal and manipulation of the simplicial

o star — evaluation of the star of a simplex;
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Operations

The operations for traversal and manipulation of the simplicial
complex include:

o star — evaluation of the star of a simplex;

o closure — evaluation of the closure of a simplex or a set of
simplices;
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Operations

The operations for traversal and manipulation of the simplicial
complex include:

o star — evaluation of the star of a simplex;

o closure — evaluation of the closure of a simplex or a set of
simplices;

¢ link — evaluation of the link of a simplex;
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Operations

The operations for traversal and manipulation of the simplicial
complex include:

o star — evaluation of the star of a simplex;

o closure — evaluation of the closure of a simplex or a set of
simplices;

¢ link — evaluation of the link of a simplex;
¢ boundary — evaluation of the boundary of the simplex;
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Operations

The operations for traversal and manipulation of the simplicial
complex include:

o star — evaluation of the star of a simplex;

o closure — evaluation of the closure of a simplex or a set of
simplices;

¢ link — evaluation of the link of a simplex;
¢ boundary — evaluation of the boundary of the simplex;

¢ orient faces consistently/oppositely — enforcing a
consistent/opposite orientation on all (p— 1)-faces of a p-simplex
oP;
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Operations

The operations for traversal and manipulation of the simplicial
complex include:

o star — evaluation of the star of a simplex;

¢ closure — evaluation of the closure of a simplex or a set of
simplices;

¢ link — evaluation of the link of a simplex;

¢ boundary — evaluation of the boundary of the simplex;

¢ orient faces consistently/oppositely — enforcing a
consistent/opposite orientation on all (p— 1)-faces of a p-simplex
oP;

« orient co-faces consistently/oppositely — enforcing a
consistent/opposite orientation on all (p+ 1)-simplices having a
given p-simplex o” as a face;
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o J. M. Lee. Introduction to topological manifolds. 2000.
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