
Introduction Fluid Solver Implementation and Results

The 3D DSC in Fluid Simulation

Marek K. Misztal

Informatics and Mathematical Modelling, Technical University of Denmark
mkm@imm.dtu.dk

DSC 2011 Workshop
Kgs. Lyngby, 26th August 2011

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Governing Equations

• The general equation governing fluid dynamics is the
Navier-Stokes equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + ∇ ·T+ f.

• In many cases we are only interested in incompressible flow.
Assumption that ∇ ·u = 0 leads to simpler equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + µ∇
2u + f.

• Dropping viscosity term simplifies the equation even further,
leading to Euler equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + f.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Governing Equations

• The general equation governing fluid dynamics is the
Navier-Stokes equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + ∇ ·T+ f.

• In many cases we are only interested in incompressible flow.
Assumption that ∇ ·u = 0 leads to simpler equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + µ∇
2u + f.

• Dropping viscosity term simplifies the equation even further,
leading to Euler equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + f.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Governing Equations

• The general equation governing fluid dynamics is the
Navier-Stokes equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + ∇ ·T+ f.

• In many cases we are only interested in incompressible flow.
Assumption that ∇ ·u = 0 leads to simpler equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + µ∇
2u + f.

• Dropping viscosity term simplifies the equation even further,
leading to Euler equation:

ρ

(
∂u
∂ t

+ (u ·∇)u
)

=−∇p + f.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• The free surface of the fluid is being tracked using level set
method.

• N-S equation is usually solved using fractional step method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• The free surface of the fluid is being tracked using level set
method.

• N-S equation is usually solved using fractional step method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• This approach suffers from numerous drawbacks:

• rapid volume loss due to the numerical diffusion,
• difficulty in handling solid boundaries which are not aligned with the

grid,
• numerical errors introduce significant viscosity,
• lack of explicit free surface representantion (and hence, difficulty to

include the surface energy),
• lack of support of multiple phases.

• Most of these drawbacks have been addressed in recent years,
at the expense of simplicity of the original method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• This approach suffers from numerous drawbacks:
• rapid volume loss due to the numerical diffusion,

• difficulty in handling solid boundaries which are not aligned with the
grid,

• numerical errors introduce significant viscosity,
• lack of explicit free surface representantion (and hence, difficulty to

include the surface energy),
• lack of support of multiple phases.

• Most of these drawbacks have been addressed in recent years,
at the expense of simplicity of the original method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• This approach suffers from numerous drawbacks:
• rapid volume loss due to the numerical diffusion,
• difficulty in handling solid boundaries which are not aligned with the

grid,

• numerical errors introduce significant viscosity,
• lack of explicit free surface representantion (and hence, difficulty to

include the surface energy),
• lack of support of multiple phases.

• Most of these drawbacks have been addressed in recent years,
at the expense of simplicity of the original method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• This approach suffers from numerous drawbacks:
• rapid volume loss due to the numerical diffusion,
• difficulty in handling solid boundaries which are not aligned with the

grid,
• numerical errors introduce significant viscosity,

• lack of explicit free surface representantion (and hence, difficulty to
include the surface energy),

• lack of support of multiple phases.

• Most of these drawbacks have been addressed in recent years,
at the expense of simplicity of the original method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• This approach suffers from numerous drawbacks:
• rapid volume loss due to the numerical diffusion,
• difficulty in handling solid boundaries which are not aligned with the

grid,
• numerical errors introduce significant viscosity,
• lack of explicit free surface representantion (and hence, difficulty to

include the surface energy),

• lack of support of multiple phases.

• Most of these drawbacks have been addressed in recent years,
at the expense of simplicity of the original method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• This approach suffers from numerous drawbacks:
• rapid volume loss due to the numerical diffusion,
• difficulty in handling solid boundaries which are not aligned with the

grid,
• numerical errors introduce significant viscosity,
• lack of explicit free surface representantion (and hence, difficulty to

include the surface energy),
• lack of support of multiple phases.

• Most of these drawbacks have been addressed in recent years,
at the expense of simplicity of the original method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Eulerian Approach

• This approach suffers from numerous drawbacks:
• rapid volume loss due to the numerical diffusion,
• difficulty in handling solid boundaries which are not aligned with the

grid,
• numerical errors introduce significant viscosity,
• lack of explicit free surface representantion (and hence, difficulty to

include the surface energy),
• lack of support of multiple phases.

• Most of these drawbacks have been addressed in recent years,
at the expense of simplicity of the original method.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Lagrangian Approach

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Our Method

• Our finite element-based fluid solver is built upon an original,
Lagrangian method for deformable interface tracking, the
deformable simplicial complex (DSC).

• Unlike in other fluid solvers using unstructured grid, the
computational grid is not fixed or rebuilt at every time step, but it
evolves over time, maintaining the fluid interface as a
subcomplex (triangle mesh embedded in the grid).

• We are going to show that our solver is intrinsically free of the
shortcomings of the regular grid-based methods.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Our Method

• Our finite element-based fluid solver is built upon an original,
Lagrangian method for deformable interface tracking, the
deformable simplicial complex (DSC).

• Unlike in other fluid solvers using unstructured grid, the
computational grid is not fixed or rebuilt at every time step, but it
evolves over time, maintaining the fluid interface as a
subcomplex (triangle mesh embedded in the grid).

• We are going to show that our solver is intrinsically free of the
shortcomings of the regular grid-based methods.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Our Method

• Our finite element-based fluid solver is built upon an original,
Lagrangian method for deformable interface tracking, the
deformable simplicial complex (DSC).

• Unlike in other fluid solvers using unstructured grid, the
computational grid is not fixed or rebuilt at every time step, but it
evolves over time, maintaining the fluid interface as a
subcomplex (triangle mesh embedded in the grid).

• We are going to show that our solver is intrinsically free of the
shortcomings of the regular grid-based methods.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Setup

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Method

• We treat the mesh triangles/tetrahedra as conforming, linear
elements. Hence, the velocity field is defined as:

u(x) =
NV

∑
i=1

ui ·φi (x),

where NV is the number of vertices and φi is the linear
interpolant (hat function).

• Our solver resembles fractional step method in the sense that we
separate advection from the other terms.

• Advection is performed in purely Lagrangian way: velocity values
“travel” together with the vertices.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Method

• We treat the mesh triangles/tetrahedra as conforming, linear
elements. Hence, the velocity field is defined as:

u(x) =
NV

∑
i=1

ui ·φi (x),

where NV is the number of vertices and φi is the linear
interpolant (hat function).

• Our solver resembles fractional step method in the sense that we
separate advection from the other terms.

• Advection is performed in purely Lagrangian way: velocity values
“travel” together with the vertices.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Method

• We treat the mesh triangles/tetrahedra as conforming, linear
elements. Hence, the velocity field is defined as:

u(x) =
NV

∑
i=1

ui ·φi (x),

where NV is the number of vertices and φi is the linear
interpolant (hat function).

• Our solver resembles fractional step method in the sense that we
separate advection from the other terms.

• Advection is performed in purely Lagrangian way: velocity values
“travel” together with the vertices.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Incompressibility

• We aim at keeping the velocity field divergence-free in each
element:

∇ ·u =
NV

∑
i=1

ui ·∇φi (x) = 0.

∇φi is constant over every element.

• By putting together incompressibility conditions for all tetrahedra
we obtain a system of linear equations:

Pu = 0,

where P is a discrete divergence operator (matrix).

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Incompressibility

• We aim at keeping the velocity field divergence-free in each
element:

∇ ·u =
NV

∑
i=1

ui ·∇φi (x) = 0.

∇φi is constant over every element.
• By putting together incompressibility conditions for all tetrahedra

we obtain a system of linear equations:

Pu = 0,

where P is a discrete divergence operator (matrix).

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Incompressibility

• Since the velocity field ũ after the advection step might not be
divergence-free, we introduce pressure field p, such that:

u = ũ + M−1PT p,

where u is divergece-free and M is the lumped mass matrix.

• Incompressibility condition Pu = 0 yields that:

(PM−1PT )p =−Pũ.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Incompressibility

• Since the velocity field ũ after the advection step might not be
divergence-free, we introduce pressure field p, such that:

u = ũ + M−1PT p,

where u is divergece-free and M is the lumped mass matrix.
• Incompressibility condition Pu = 0 yields that:

(PM−1PT )p =−Pũ.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Surface Tension

• In order to make our fluid simulation more plausible we include
surface tension. Surface tension is derived from surface energy
U defined as:

U = γA,

where γ is the surface energy density (material constant) and A
is the free surface area.

• Surface tension forces alone yield a highly divergent velocity field
and our experiments have shown that integrating them before
enforcing incompressibility step can give very poor results.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Surface Tension

• In order to make our fluid simulation more plausible we include
surface tension. Surface tension is derived from surface energy
U defined as:

U = γA,

where γ is the surface energy density (material constant) and A
is the free surface area.

• Surface tension forces alone yield a highly divergent velocity field
and our experiments have shown that integrating them before
enforcing incompressibility step can give very poor results.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Optimization-based Approach

• In order to correctly incorporate surface tension forces we fully
couple them with incompressibility by solving the optimization
problem:

minimize
1
2

(u− ũ)T M(u− ũ) + U(x + u∆t),

subject to Pu = 0,

where U is the surface energy.

• The optimization problem is consistent, as the 1st order KKT
condition is the backward Euler step:

u = ũ + ∆tM−1
∇U(u) + M−1PT p,

where the pressure p plays the role of Lagrange multipliers.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Optimization-based Approach

• In order to correctly incorporate surface tension forces we fully
couple them with incompressibility by solving the optimization
problem:

minimize
1
2

(u− ũ)T M(u− ũ) + U(x + u∆t),

subject to Pu = 0,

where U is the surface energy.
• The optimization problem is consistent, as the 1st order KKT

condition is the backward Euler step:

u = ũ + ∆tM−1
∇U(u) + M−1PT p,

where the pressure p plays the role of Lagrange multipliers.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Optimization-based Approach contd.

• By using the second order approximation of surface energy:

U(x + u∆t)≈ U(x) + ∆t∇U ·u +
∆t2

2
uT

∇
2Uu

we can further simplify the optimization problem to the form:

minimize
1
2

uT (M + ∆t2
∇

2U)u + (−ũT M + ∆t∇U)u,

subject to Pu = 0,

• Now we can write the 1st order KKT condition as:

(M + ∆t2
∇

2U)u + PT p = Mũ−∆t(∇U)T .

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Optimization-based Approach contd.

• By using the second order approximation of surface energy:

U(x + u∆t)≈ U(x) + ∆t∇U ·u +
∆t2

2
uT

∇
2Uu

we can further simplify the optimization problem to the form:

minimize
1
2

uT (M + ∆t2
∇

2U)u + (−ũT M + ∆t∇U)u,

subject to Pu = 0,

• Now we can write the 1st order KKT condition as:

(M + ∆t2
∇

2U)u + PT p = Mũ−∆t(∇U)T .

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

KKT system

• Let us denote:

A = M + ∆t2
∇

2U,

b = Mũ−∆t(∇U)T .

• The KKT conditions for our quadratic optimization problem form
a linear equation:[

A PT

P 0

][
u
p

]
=

[
b
0

]
.

• Note that the KKT matrix is indefinite.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

KKT system

• Let us denote:

A = M + ∆t2
∇

2U,

b = Mũ−∆t(∇U)T .

• The KKT conditions for our quadratic optimization problem form
a linear equation:[

A PT

P 0

][
u
p

]
=

[
b
0

]
.

• Note that the KKT matrix is indefinite.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

KKT system

• Let us denote:

A = M + ∆t2
∇

2U,

b = Mũ−∆t(∇U)T .

• The KKT conditions for our quadratic optimization problem form
a linear equation:[

A PT

P 0

][
u
p

]
=

[
b
0

]
.

• Note that the KKT matrix is indefinite.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Locking

Locking means inability of a given finite element space to offer good
approximate solutions, due to the fact that volume constraint on each
tetrahedron may leave us with a solution space of very low dimension.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Pressure Stabilization

• To prevent it, we add a pressure stabilization term S to the
equation: [

A PT

P −S

][
u
p

]
=

[
b
0

]
. (1)

such that:

Sij =

{
−δ ·aij if i 6= j
δ ·∑k 6=i aik if i = j , (2)

where δ is a positive stabilization parameter and aij is the area of
the face shared by tetrahedra i and j .

• Such stabilization term smoothens the pressure field in
exchange for slight violation of incompressibility constraint, while
globally preserving volume.

• In our simulations δ = ∆t ·k2, where k is the speed of sound in
the medium.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Pressure Stabilization

• To prevent it, we add a pressure stabilization term S to the
equation: [

A PT

P −S

][
u
p

]
=

[
b
0

]
. (1)

such that:

Sij =

{
−δ ·aij if i 6= j
δ ·∑k 6=i aik if i = j , (2)

where δ is a positive stabilization parameter and aij is the area of
the face shared by tetrahedra i and j .

• Such stabilization term smoothens the pressure field in
exchange for slight violation of incompressibility constraint, while
globally preserving volume.

• In our simulations δ = ∆t ·k2, where k is the speed of sound in
the medium.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Pressure Stabilization

• To prevent it, we add a pressure stabilization term S to the
equation: [

A PT

P −S

][
u
p

]
=

[
b
0

]
. (1)

such that:

Sij =

{
−δ ·aij if i 6= j
δ ·∑k 6=i aik if i = j , (2)

where δ is a positive stabilization parameter and aij is the area of
the face shared by tetrahedra i and j .

• Such stabilization term smoothens the pressure field in
exchange for slight violation of incompressibility constraint, while
globally preserving volume.

• In our simulations δ = ∆t ·k2, where k is the speed of sound in
the medium.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Solid boundaries

Solid boundaries put extra constraints on vertex velocity values. If the
vertex vi is in contact with the solid, we force its normal coordinate to
match the normal coordinate of the solid velocity at the point of
collision.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Viscosity

• More rigorous derivation of our finite element scheme can be
found in: K. Erleben, M. K. Misztal and J. A. Bærentzen.
Mathematical Foundation of the Optimization-based Fluid
Animation Method. SCA 2011.

• Applying Galerkin method to the Navier-Stokes equation allows
us to introduce viscosity into our scheme.

• This can be done by adding a ∆tD term to the A matrix, where:

Dij =
∫

Vfluid

µ(∇φ
T
i ∇φj I + ∇φi∇φ

T
j )dV .

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Viscosity

• More rigorous derivation of our finite element scheme can be
found in: K. Erleben, M. K. Misztal and J. A. Bærentzen.
Mathematical Foundation of the Optimization-based Fluid
Animation Method. SCA 2011.

• Applying Galerkin method to the Navier-Stokes equation allows
us to introduce viscosity into our scheme.

• This can be done by adding a ∆tD term to the A matrix, where:

Dij =
∫

Vfluid

µ(∇φ
T
i ∇φj I + ∇φi∇φ

T
j )dV .

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Viscosity

• More rigorous derivation of our finite element scheme can be
found in: K. Erleben, M. K. Misztal and J. A. Bærentzen.
Mathematical Foundation of the Optimization-based Fluid
Animation Method. SCA 2011.

• Applying Galerkin method to the Navier-Stokes equation allows
us to introduce viscosity into our scheme.

• This can be done by adding a ∆tD term to the A matrix, where:

Dij =
∫

Vfluid

µ(∇φ
T
i ∇φj I + ∇φi∇φ

T
j )dV .

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Examples

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Examples

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Examples

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Examples

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Examples

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Performance

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Implementation

• In the previous version of our fluid solver we had been using
CHOLMOD (a Cholesky solver) in order to solve the KKT system.

• Unfortunatelly, the complexity of Cholesky decomposition for
sparse matrices is at best O(n3/2), where n is the size of the
matrix. This way, solving the KKT system quickly becomes the
bottleneck.

• In order to avoid that we have recently switched the method to an
iterative one: generalized minimal residual (GMRES) method.

• We are using CUDA-based implementation of GMRES, available
in CUSP library.

• In order to improve the conditioning of the system, we multiply A
and b by:

2 · ‖P‖∞

‖M‖∞

.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Implementation

• In the previous version of our fluid solver we had been using
CHOLMOD (a Cholesky solver) in order to solve the KKT system.

• Unfortunatelly, the complexity of Cholesky decomposition for
sparse matrices is at best O(n3/2), where n is the size of the
matrix. This way, solving the KKT system quickly becomes the
bottleneck.

• In order to avoid that we have recently switched the method to an
iterative one: generalized minimal residual (GMRES) method.

• We are using CUDA-based implementation of GMRES, available
in CUSP library.

• In order to improve the conditioning of the system, we multiply A
and b by:

2 · ‖P‖∞

‖M‖∞

.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Implementation

• In the previous version of our fluid solver we had been using
CHOLMOD (a Cholesky solver) in order to solve the KKT system.

• Unfortunatelly, the complexity of Cholesky decomposition for
sparse matrices is at best O(n3/2), where n is the size of the
matrix. This way, solving the KKT system quickly becomes the
bottleneck.

• In order to avoid that we have recently switched the method to an
iterative one: generalized minimal residual (GMRES) method.

• We are using CUDA-based implementation of GMRES, available
in CUSP library.

• In order to improve the conditioning of the system, we multiply A
and b by:

2 · ‖P‖∞

‖M‖∞

.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Implementation

• In the previous version of our fluid solver we had been using
CHOLMOD (a Cholesky solver) in order to solve the KKT system.

• Unfortunatelly, the complexity of Cholesky decomposition for
sparse matrices is at best O(n3/2), where n is the size of the
matrix. This way, solving the KKT system quickly becomes the
bottleneck.

• In order to avoid that we have recently switched the method to an
iterative one: generalized minimal residual (GMRES) method.

• We are using CUDA-based implementation of GMRES, available
in CUSP library.

• In order to improve the conditioning of the system, we multiply A
and b by:

2 · ‖P‖∞

‖M‖∞

.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Implementation

• In the previous version of our fluid solver we had been using
CHOLMOD (a Cholesky solver) in order to solve the KKT system.

• Unfortunatelly, the complexity of Cholesky decomposition for
sparse matrices is at best O(n3/2), where n is the size of the
matrix. This way, solving the KKT system quickly becomes the
bottleneck.

• In order to avoid that we have recently switched the method to an
iterative one: generalized minimal residual (GMRES) method.

• We are using CUDA-based implementation of GMRES, available
in CUSP library.

• In order to improve the conditioning of the system, we multiply A
and b by:

2 · ‖P‖∞

‖M‖∞

.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Preconditioning
• Let us consider a linear system Kx = c

• The convergence rate of many iterative solvers depends on the
condition number κ of the matrix K:

κ =

∣∣∣∣∣λmax(K)

λmin(K)

∣∣∣∣∣,
where λmax and λmin are the maximum and minimum (by moduli)
eigenvalues of K.

• We can improve the condition number of the system by applying
a preconditioner T:

TKx = Tc.
• For our KKT system we are using the diagonal approximation of

Murphy’s block preconditioner (based on the Schur complement
method):

T−1 =

[
diag(M) 0

0 diag(PT M−1P + S)

]

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Preconditioning
• Let us consider a linear system Kx = c
• The convergence rate of many iterative solvers depends on the

condition number κ of the matrix K:

κ =

∣∣∣∣∣λmax(K)

λmin(K)

∣∣∣∣∣,
where λmax and λmin are the maximum and minimum (by moduli)
eigenvalues of K.

• We can improve the condition number of the system by applying
a preconditioner T:

TKx = Tc.
• For our KKT system we are using the diagonal approximation of

Murphy’s block preconditioner (based on the Schur complement
method):

T−1 =

[
diag(M) 0

0 diag(PT M−1P + S)

]

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Preconditioning
• Let us consider a linear system Kx = c
• The convergence rate of many iterative solvers depends on the

condition number κ of the matrix K:

κ =

∣∣∣∣∣λmax(K)

λmin(K)

∣∣∣∣∣,
where λmax and λmin are the maximum and minimum (by moduli)
eigenvalues of K.

• We can improve the condition number of the system by applying
a preconditioner T:

TKx = Tc.

• For our KKT system we are using the diagonal approximation of
Murphy’s block preconditioner (based on the Schur complement
method):

T−1 =

[
diag(M) 0

0 diag(PT M−1P + S)

]

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Preconditioning
• Let us consider a linear system Kx = c
• The convergence rate of many iterative solvers depends on the

condition number κ of the matrix K:

κ =

∣∣∣∣∣λmax(K)

λmin(K)

∣∣∣∣∣,
where λmax and λmin are the maximum and minimum (by moduli)
eigenvalues of K.

• We can improve the condition number of the system by applying
a preconditioner T:

TKx = Tc.
• For our KKT system we are using the diagonal approximation of

Murphy’s block preconditioner (based on the Schur complement
method):

T−1 =

[
diag(M) 0

0 diag(PT M−1P + S)

]
M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Future work

• Finishing implementation of viscosity.

• More aggressive mesh quality improvement.
• Parameter studies, in particular experimental evaluation of the

time-step restrictions.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Future work

• Finishing implementation of viscosity.
• More aggressive mesh quality improvement.

• Parameter studies, in particular experimental evaluation of the
time-step restrictions.

M. K. Misztal The 3D DSC in Fluid Simulation



Introduction Fluid Solver Implementation and Results

Future work

• Finishing implementation of viscosity.
• More aggressive mesh quality improvement.
• Parameter studies, in particular experimental evaluation of the

time-step restrictions.

M. K. Misztal The 3D DSC in Fluid Simulation


	Introduction
	Background

	Fluid Solver
	Method Description

	Implementation and Results
	Implementation and Results


