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o Explicit (or Lagrangian) methods:
o use the parametrization of the interface,
o perform the advection by solving an ODE

dp _
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Deformable models

o Explicit (or Lagrangian) methods:
o use the parametrization of the interface,
e perform the advection by solving an ODE:

op _
E - v(p)7

e require reparametrization, surgical cuts and collision detection in
order to handle changes in the topology of the interface.
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Deformable models

o Explicit (or Lagrangian) methods:
o use the parametrization of the interface,
e perform the advection by solving an ODE:

op _
E - v(p)7

e require reparametrization, surgical cuts and collision detection in
order to handle changes in the topology of the interface.

¢ Implicit (or Eulerian) methods:
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Deformable models

o Explicit (or Lagrangian) methods:
o use the parametrization of the interface,
e perform the advection by solving an ODE:

op _
E - v(p)7

e require reparametrization, surgical cuts and collision detection in
order to handle changes in the topology of the interface.

¢ Implicit (or Eulerian) methods:

¢ represent the n-dimensional interface as the 0-level set of a
(n+1)-dimensional function @(x1,Xg,...,Xpt1),
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Deformable models

o Explicit (or Lagrangian) methods:
o use the parametrization of the interface,
e perform the advection by solving an ODE:

dp
— =V
o = V(P):
e require reparametrization, surgical cuts and collision detection in
order to handle changes in the topology of the interface.
¢ Implicit (or Eulerian) methods:
¢ represent the n-dimensional interface as the 0-level set of a
(n+1)-dimensional function @(x1,Xg,...,Xpt1),
¢ deformation is produced through evolution of the function ¢, rather
than the interface itself.
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Level Set Method

09 00 0 ¢

| B B

The function is defined on the nodes of a rectangular grid.
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Level Set Method

Evolution of the interface due to the velocity field v is described by the
following PDE (level set equation):

e
W‘FU'V([)—O.
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Signed distance function is a popular choice for ¢.
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This approach provides trivial and robust topological adaptivity.
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e Bound to a certain scale (not scale adaptive).
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Examples

Drawbacks of the Level Set Method

e Bound to a certain scale (not scale adaptive).

¢ Significant numerical diffusion (which results in troubles with
preserving sharp details).
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Drawbacks of the Level Set Method

e Bound to a certain scale (not scale adaptive).

¢ Significant numerical diffusion (which results in troubles with
preserving sharp details).

o Lack of the explicit representation of the interface.
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Drawbacks of the Level Set Method

Bound to a certain scale (not scale adaptive).

Significant numerical diffusion (which results in troubles with
preserving sharp details).

Lack of the explicit representation of the interface.
Difficulty in representing multiple phases.
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Drawbacks of the Level Set Method

Bound to a certain scale (not scale adaptive).

Significant numerical diffusion (which results in troubles with
preserving sharp details).

Lack of the explicit representation of the interface.
Difficulty in representing multiple phases.
Cannot be treated as a black box.
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Drawbacks of the Level Set Method

Bound to a certain scale (not scale adaptive).

Significant numerical diffusion (which results in troubles with
preserving sharp details).

Lack of the explicit representation of the interface.
Difficulty in representing multiple phases.

Cannot be treated as a black box.

Extra dimension needed.
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o The interface is represented explicitly as a piecewise linear
curve (in 2D) or surface (in 3D).
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Deformable simplicial complex

o The interface is represented explicitly as a piecewise linear
curve (in 2D) or surface (in 3D).

¢ However, the embedding space is also a subject to a
discretization (triangulation in 2D or tetrahedralization in 3D)
fulfilling two conditions:
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Deformable simplicial complex

o The interface is represented explicitly as a piecewise linear
curve (in 2D) or surface (in 3D).
¢ However, the embedding space is also a subject to a
discretization (triangulation in 2D or tetrahedralization in 3D)
fulfilling two conditions:
o simplicial complex criterion — the intersection of two simplices can
be either empty or be their common face;
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Deformable simplicial complex

o The interface is represented explicitly as a piecewise linear
curve (in 2D) or surface (in 3D).

¢ However, the embedding space is also a subject to a
discretization (triangulation in 2D or tetrahedralization in 3D)
fulfilling two conditions:

o simplicial complex criterion — the intersection of two simplices can
be either empty or be their common face;

¢ it conforms to the interface — the interface can be seen as defined
implicitly as a set of boundary edges (faces) between the triangles
(tetrahedra) marked as outside and inside.

M. K. Misztal Deformable Simplicial Complex



Method
0008000

Deformable simplicial complex

o The interface is represented explicitly as a piecewise linear
curve (in 2D) or surface (in 3D).
¢ However, the embedding space is also a subject to a
discretization (triangulation in 2D or tetrahedralization in 3D)
fulfilling two conditions:
o simplicial complex criterion — the intersection of two simplices can
be either empty or be their common face;
¢ it conforms to the interface — the interface can be seen as defined
implicitly as a set of boundary edges (faces) between the triangles
(tetrahedra) marked as outside and inside.

o The interface deformation is performed via displacements of the
interface vertices, while keeping the simplicial complex criterion
of the underlying triangulation (tetrahedralization) all the time.

M. K. Misztal Deformable Simplicial Complex



600000000000 S

«O>r «Fr <

Deformable Simplicial Complex



600000000000 S

«O>r «Fr <

Deformable Simplicial Complex



o
000000000000

1. In each iteration we compute new positions for the vertices of the
interface, and attempt to displace them to the new positions, one
ofter another.
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Algorithm Overview

1. In each iteration we compute new positions for the vertices of the
interface, and attempt to displace them to the new positions, one
ofter another.

2. If the displacement does not invert any triangles (tetrahedra) in
the 1-ring of the vertex, it is performed.
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Algorithm Overview

1. In each iteration we compute new positions for the vertices of the
interface, and attempt to displace them to the new positions, one
ofter another.

2. If the displacement does not invert any triangles (tetrahedra) in
the 1-ring of the vertex, it is performed.

3. Otherwise it is moved as far as possible (without inverting any
triangles/tetrahedra) along the straight line connecting the old
and the new positions.
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Algorithm Overview

. In each iteration we compute new positions for the vertices of the
interface, and attempt to displace them to the new positions, one
ofter another.

. If the displacement does not invert any triangles (tetrahedra) in
the 1-ring of the vertex, it is performed.

. Otherwise it is moved as far as possible (without inverting any
triangles/tetrahedra) along the straight line connecting the old
and the new positions.

. The displacement step is followed by a mesh improvement step

aiming at improving the quality of the mesh and removing
degenerate triangles (tetrahedra) created during displacement
step.
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Algorithm Overview

. In each iteration we compute new positions for the vertices of the
interface, and attempt to displace them to the new positions, one
ofter another.

. If the displacement does not invert any triangles (tetrahedra) in
the 1-ring of the vertex, it is performed.

. Otherwise it is moved as far as possible (without inverting any

triangles/tetrahedra) along the straight line connecting the old
and the new positions.

. The displacement step is followed by a mesh improvement step

aiming at improving the quality of the mesh and removing
degenerate triangles (tetrahedra) created during displacement
step.

. Steps 3 and 4 are performed until all vertices are moved to the

new positions.
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e Little numerical diffusion.

o Explicit interface representation.

o does not change gratuitously between time steps;
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Advantages of the Representation

o Little numerical diffusion.
o Explicit interface representation.

e does not change gratuitously between time steps;
o Adaptive resolution.
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Advantages of the Representation

Little numerical diffusion.
Explicit interface representation.
e does not change gratuitously between time steps;
Adaptive resolution.
Robust topological adaptivity.
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Advantages of the Representation

Little numerical diffusion.
Explicit interface representation.
e does not change gratuitously between time steps;

Adaptive resolution.
Robust topological adaptivity.
Supports multiple phases.
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Advantages of the Representation

Little numerical diffusion.
Explicit interface representation.
e does not change gratuitously between time steps;

Adaptive resolution.

Robust topological adaptivity.

Supports multiple phases.

Simple, intrinsic collision detection mechanism.
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Advantages of the Representation

Little numerical diffusion.
Explicit interface representation.
e does not change gratuitously between time steps;

Adaptive resolution.

Robust topological adaptivity.

Supports multiple phases.

Simple, intrinsic collision detection mechanism.
Allows for topology control.
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In the 2D case, we attempt to keep the Delaunay property of the
mesh. Mesh repair step involves the following operations:
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Implementation

Mesh improvement in 2D

In the 2D case, we attempt to keep the Delaunay property of the
mesh. Mesh repair step involves the following operations:

o Laplacian smoothing: moving non-interface vertex towards the
arycenter of its neighbors;
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Mesh improvement in 2D

In the 2D case, we attempt to keep the Delaunay property of the
mesh. Mesh repair step involves the following operations:

¢ Laplacian smoothing: moving non-interface vertex towards the
arycenter of its neighbors;

¢ edge flips: for non-interface edges, not fulfilling the Delaunay
property;
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Mesh improvement in 2D

In the 2D case, we attempt to keep the Delaunay property of the
mesh. Mesh repair step involves the following operations:

¢ Laplacian smoothing: moving non-interface vertex towards the
arycenter of its neighbors;

¢ edge flips: for non-interface edges, not fulfilling the Delaunay
property;

o detail control: edge collapse (for non-interface edges) and
needle splits;
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Mesh improvement in 2D

In the 2D case, we attempt to keep the Delaunay property of the
mesh. Mesh repair step involves the following operations:

¢ Laplacian smoothing: moving non-interface vertex towards the
arycenter of its neighbors;

¢ edge flips: for non-interface edges, not fulfilling the Delaunay
property;

o detail control: edge collapse (for non-interface edges) and
needle splits;

¢ degenerate triangles removal: cap flips, allowing the interface
topology to change.
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mediocre performance in 3D.

e The outline of the 3D DSC method resembled that of 2D DSC
method, however some of the tools useful in the 2D case exhibit
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3D mesh

e The outline of the 3D DSC method resembled that of 2D DSC
method, however some of the tools useful in the 2D case exhibit
mediocre performance in 3D.

¢ Delaunay meshes, useful in the 2D case, tend to contain slivers
(flat, nearly degenerate tetrahedra) unless special rules
regarding to vertex placement apply.
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3D mesh

e The outline of the 3D DSC method resembled that of 2D DSC
method, however some of the tools useful in the 2D case exhibit
mediocre performance in 3D.

¢ Delaunay meshes, useful in the 2D case, tend to contain slivers
(flat, nearly degenerate tetrahedra) unless special rules
regarding to vertex placement apply.

o Laplacian smoothing may produce inverted tetrahedra in 3D
despite reasonable performance in 2D.
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Quality measure

Instead of using the Delaunay quality measure of a tetrahedron
(minimum solid angle) in mesh quality improvement operations, we
aimed for a quality measure which would penalize both flat
tetrahedra, characterized by near-zero volume despite the fact that
the distances between their vertices (edge lengths) can be large.

We have chosen to improve the volume-length ratio of a tetrahedron:

Q(c) = 62 ‘7§"),

rms

where V(t) is the oriented volume of a tetrahedron ¢, and ks is the
average (root-mean-squared) of the lengths of its edges:

o+ By + By + Iy + 5, + I,
/rms: 6 .
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o Mesh improvement step aims at improving mesh quality defined
as the volume-length ratio.
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Mesh improvement step

¢ Mesh improvement step aims at improving mesh quality defined
as the volume-length ratio.

¢ |t contains the following types of operations:
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Mesh improvement step

¢ Mesh improvement step aims at improving mesh quality defined
as the volume-length ratio.

¢ |t contains the following types of operations:
¢ smoothing;
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Mesh improvement step

¢ Mesh improvement step aims at improving mesh quality defined
as the volume-length ratio.
¢ |t contains the following types of operations:

¢ smoothing;
e reconnection;
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Mesh improvement step

¢ Mesh improvement step aims at improving mesh quality defined
as the volume-length ratio.
¢ |t contains the following types of operations:

¢ smoothing;
e reconnection;
e detail control through edge splits and edge collapses;
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Mesh improvement step

¢ Mesh improvement step aims at improving mesh quality defined
as the volume-length ratio.
¢ |t contains the following types of operations:
¢ smoothing;
e reconnection;
e detail control through edge splits and edge collapses;
¢ degenerate tetrahedron removal, through relabelling and more
aggressive methods;
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Mesh improvement step

¢ Mesh improvement step aims at improving mesh quality defined
as the volume-length ratio.
¢ |t contains the following types of operations:
¢ smoothing;
e reconnection;
e detail control through edge splits and edge collapses;
¢ degenerate tetrahedron removal, through relabelling and more
aggressive methods;
¢ In order to optimize the performance, we only perform one pass
of improvement for the whole mesh per iteration. In other vertex
displacement passes, we only perform improvement for the set of
tetrahedra adjacent to the vertices, which have not arrived at
their final positions yet.
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e Laplacian smoothing, useful in 2D meshes, does not work quite

as well in the 3D case — it tends to produce inverted tetrahedra.
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Smoothing

e Laplacian smoothing, useful in 2D meshes, does not work quite
as well in the 3D case — it tends to produce inverted tetrahedra.

¢ We are using smart Laplacian smoothing (where the
displacement is only performed if it improves the quality locally)
performs much better, however it sometimes fails to improve the
mesh quality significantly.
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Smoothing

e Laplacian smoothing, useful in 2D meshes, does not work quite
as well in the 3D case — it tends to produce inverted tetrahedra.

¢ We are using smart Laplacian smoothing (where the
displacement is only performed if it improves the quality locally)
performs much better, however it sometimes fails to improve the
mesh quality significantly.

¢ |f that is the case and the minimum quality in the star of a vertex
v is lower than 0.1, we perform optimization-based smoothing
(by L. Freitag et al.), which tries to maximize the minimum quality
in the star of v. This is clearly a non-smooth optimization
problem.
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¢ The topological operations (or flips, or swaps) are
generalizations of the edge flip in the 2D case.
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Topological operations

¢ The topological operations (or flips, or swaps) are
generalizations of the edge flip in the 2D case.

¢ They aim at reconnecting the mesh without changing vertex
placement.
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Topological operations

¢ The topological operations (or flips, or swaps) are
generalizations of the edge flip in the 2D case.

¢ They aim at reconnecting the mesh without changing vertex
placement.

e There are several ways of generalizing edge flip to 3D meshes,
including:
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Topological operations

¢ The topological operations (or flips, or swaps) are
generalizations of the edge flip in the 2D case.

¢ They aim at reconnecting the mesh without changing vertex
placement.

e There are several ways of generalizing edge flip to 3D meshes,
including:
e edge removal,
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Topological operations

¢ The topological operations (or flips, or swaps) are
generalizations of the edge flip in the 2D case.

¢ They aim at reconnecting the mesh without changing vertex
placement.

e There are several ways of generalizing edge flip to 3D meshes,
including:
e edge removal,
o multi-face removal,
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Topological operations

¢ The topological operations (or flips, or swaps) are
generalizations of the edge flip in the 2D case.
¢ They aim at reconnecting the mesh without changing vertex
placement.
e There are several ways of generalizing edge flip to 3D meshes,
including:
e edge removal,
o multi-face removal,
¢ multi-face retriangulation.
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Topological operations (reconnection)

multi-face retriangulation
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multi-face retriangulation

a

edge removal
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Topological operations

e Edge removal requires to select the final triangulation of the link
of the removed edge. The selection is made using Klincsek’s
algorithm: a dynamic programming method which maximizes the
minimum quality over all tetrahedra produced through this
triangulation.
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Topological operations

o Edge removal requires to select the final triangulation of the link
of the removed edge. The selection is made using Klincsek’s
algorithm: a dynamic programming method which maximizes the
minimum quality over all tetrahedra produced through this
triangulation.

¢ Analogously MFRT is also using Klincsek’s algoritm in order to
determine the final triangulation of the polygon “sandwiched”
between two apices.
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Topological operations

o Edge removal requires to select the final triangulation of the link
of the removed edge. The selection is made using Klincsek’s
algorithm: a dynamic programming method which maximizes the
minimum quality over all tetrahedra produced through this
triangulation.

¢ Analogously MFRT is also using Klincsek’s algoritm in order to
determine the final triangulation of the polygon “sandwiched”
between two apices.

¢ Multi-face removal requires finding the initial set of tetrahedra to
be removed. This is also done using dynamic programming.
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¢ Input: a set of tetrahedra.
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¢ Input: a set of tetrahedra.

o For each tetrahedron in the input set, if it has not been removed
yet and its quality is less than 0.2:
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Topological pass

¢ Input: a set of tetrahedra.

o For each tetrahedron in the input set, if it has not been removed
yet and its quality is less than 0.2:
1. Attempt to remove each edge using edge removal. Edge removal is
only performed if it increases the minimum quality over the set of
tetrahedra affected by the operation.
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Topological pass

¢ Input: a set of tetrahedra.

o For each tetrahedron in the input set, if it has not been removed
yet and its quality is less than 0.2:

1. Attempt to remove each edge using edge removal. Edge removal is
only performed if it increases the minimum quality over the set of
tetrahedra affected by the operation.

2. Attempt to remove each face using multi-face retriangulation and
multi-face removal. Either of this operation is only performed if it

increases the minimum quality over the set of tetrahedra affected
by the operation.
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Detail control

The purpose of detail control is to ensure that the embedding mesh
has enough Steiner vertices, so that it is flexible enough to
accomodate changes to the interface and, on the other hand, to make
sure that the number of Steiner vertices does not increase too much,
in order to keep the performance efficient.

We utilize two operations:
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Detail control

The purpose of detail control is to ensure that the embedding mesh
has enough Steiner vertices, so that it is flexible enough to
accomodate changes to the interface and, on the other hand, to make
sure that the number of Steiner vertices does not increase too much,
in order to keep the performance efficient.

We utilize two operations:

o edge split: for long edges connecting two interface vertices, or
an interface vertex with a boundary vertex;
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Detail control

The purpose of detail control is to ensure that the embedding mesh
has enough Steiner vertices, so that it is flexible enough to
accomodate changes to the interface and, on the other hand, to make
sure that the number of Steiner vertices does not increase too much,
in order to keep the performance efficient.

We utilize two operations:

o edge split: for long edges connecting two interface vertices, or
an interface vertex with a boundary vertex;

o edge collapse: for short edges, not connected to either the
interface or the boundary of the embedding mesh, as long as it
increases the minimum quality locally or does not decrease it
below a certain threshold value.
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Interface topology changes

Whenever two parts of the interface are about to collide, nearly
degenerate tetrahedra begin to appear in the mesh. We are
producing interface topology changes by removing those tetrahedra.
We do it in two ways;
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Interface topology changes

Whenever two parts of the interface are about to collide, nearly
degenerate tetrahedra begin to appear in the mesh. We are
producing interface topology changes by removing those tetrahedra.
We do it in two ways;

o tetrahedron re-labelling: switching the label of a tetrahedron from
outside to inside (or the other way round) if it is “squeezed”
between two parts of the interface.
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Interface topology changes

Whenever two parts of the interface are about to collide, nearly
degenerate tetrahedra begin to appear in the mesh. We are
producing interface topology changes by removing those tetrahedra.
We do it in two ways;

o tetrahedron re-labelling: switching the label of a tetrahedron from
outside to inside (or the other way round) if it is “squeezed”
between two parts of the interface.

e degeneracy removal: removing nearly flat tetrahedra by
“flattening” them and replacing with 4, 3 or 2 faces. Similarily, we
remove degenerate (nearly colinear) faces and degenerate (very
short) edges.
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Surface mesh improvement

o [t turns out, in the 3D case, velocity field computation often
depends on the quality of the surface mesh. Hence, we need to
keep the mesh quality high.
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Surface mesh improvement

o [t turns out, in the 3D case, velocity field computation often
depends on the quality of the surface mesh. Hence, we need to
keep the mesh quality high.

¢ In order to do so, we perform the following operations on the
interface:
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Surface mesh improvement

o [t turns out, in the 3D case, velocity field computation often
depends on the quality of the surface mesh. Hence, we need to
keep the mesh quality high.

¢ In order to do so, we perform the following operations on the
interface:

e geometry preserving smoothing: null-space smoothing, moving
each interface, manifold vertex only in the null space of its local
quadric metric tensor.
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Surface mesh improvement

o [t turns out, in the 3D case, velocity field computation often
depends on the quality of the surface mesh. Hence, we need to
keep the mesh quality high.

¢ In order to do so, we perform the following operations on the
interface:

e geometry preserving smoothing: null-space smoothing, moving
each interface, manifold vertex only in the null space of its local
quadric metric tensor.

e edge flips: for non-feature edges not fulfilling the Delaunay criterion
(this requires reconnection of the embedding tetrahedral mesh
through edge removal).
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Surface mesh improvement

o [t turns out, in the 3D case, velocity field computation often
depends on the quality of the surface mesh. Hence, we need to
keep the mesh quality high.

¢ In order to do so, we perform the following operations on the
interface:

e geometry preserving smoothing: null-space smoothing, moving
each interface, manifold vertex only in the null space of its local
quadric metric tensor.

e edge flips: for non-feature edges not fulfilling the Delaunay criterion
(this requires reconnection of the embedding tetrahedral mesh
through edge removal).

e edge collapse: for edges shorter than a given threshold,

M. K. Misztal Deformable Simplicial Complex



Method

00000000000 e

Surface mesh improvement

o [t turns out, in the 3D case, velocity field computation often
depends on the quality of the surface mesh. Hence, we need to
keep the mesh quality high.

¢ In order to do so, we perform the following operations on the
interface:

geometry preserving smoothing: null-space smoothing, moving
each interface, manifold vertex only in the null space of its local
quadric metric tensor.

edge flips: for non-feature edges not fulfilling the Delaunay criterion
(this requires reconnection of the embedding tetrahedral mesh
through edge removal).

edge collapse: for edges shorter than a given threshold,

edge splits: for edges longer than a given threshold.
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e The 2D DSC implementation is built on top of the half-edge data
structure available in the GEL library.
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Implementation

e The 2D DSC implementation is built on top of the half-edge data
structure available in the GEL library.

e The 3D DSC implementation relies on our own C++
implementation of the Incidence Simplicial data structure for 3D
simplicial complexes by de Floriani et al.

M. K. Misztal Deformable Simplicial Complex



Implementation
°

Implementation

The 2D DSC implementation is built on top of the half-edge data
structure available in the GEL library.

The 3D DSC implementation relies on our own C++
implementation of the Incidence Simplicial data structure for 3D
simplicial complexes by de Floriani et al.

In its current form, the 3D DSC algorithm requires a triangle
mesh as an input. This triangle mesh is then normalized and
tetrahedralized on the inside and on the outside using TetGen
(the outside mesh is bounded by a sparsly subdivided
(=1;—-1,—1) x(1;1;1) box).
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¢ Rotation: produced by multiplying vertex positions by a rotation
matrix M(e, 6), where e is the rotation axis and 6 is a small angle.
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Simple geometric flows

¢ Rotation: produced by multiplying vertex positions by a rotation
matrix M(e, 6), where e is the rotation axis and 6 is a small angle.

¢ Mean curvature flow: computed using the cotangent formula.
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Simple geometric flows

¢ Rotation: produced by multiplying vertex positions by a rotation
matrix M(e, 6), where e is the rotation axis and 6 is a small angle.

¢ Mean curvature flow: computed using the cotangent formula.

o Offsetting: performed through face offsetting, rather than
displacing the vertices by a constant distance in the approximate
normal direction.
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Performance
example GENUS2 2SPHERES BUNNY DRAGON
#surf. vertices 766 1680 6929 27549
#surf. triangles 1536 3348 13934 55098
#total tets 10309 16433 77631 372015
#inside tets 2703 5554 35362 160110
time per iteration 1.2s 14s 18.2s 48.0s
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Dihedral angles

Although low quality tetrahedra occasionally appear in the DSC mesh,
dihedral angles from outside 6°-171° range constitute less than 0.1%
of all dihedral angles in the tetrahedral mesh throughout all iterations.

M. K. Misztal Deformable Simplicial Complex



Method Implementation Examples
0000000 o 000000
[e] oeo
000000000000

Dihedral angles

Although low quality tetrahedra occasionally appear in the DSC mesh,
dihedral angles from outside 6°-171° range constitute less than 0.1%
of all dihedral angles in the tetrahedral mesh throughout all iterations.

M. K. Misztal Deformable Simplicial Complex



Method Implementation Examples
0000000 o 000000
[e] oeo
000000000000

Dihedral angles

Although low quality tetrahedra occasionally appear in the DSC mesh,
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Dihedral angles

Although low quality tetrahedra occasionally appear in the DSC mesh,
dihedral angles from outside 6°-171° range constitute less than 0.1%
of all dihedral angles in the tetrahedral mesh throughout all iterations.
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e The main drawbacks of the DSC method are:

«O>r «Fr «

DA




o
000000000000

e The main drawbacks of the DSC method are:

o its complexity in terms of mesh operations used;
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e The main drawbacks of the DSC method are:

o its complexity in terms of mesh operations used;
o performance, inferior to that of the level set method;
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Conclusions

e The main drawbacks of the DSC method are:

¢ its complexity in terms of mesh operations used;
e performance, inferior to that of the level set method;

o However, it also has significant advantages:
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Conclusions

e The main drawbacks of the DSC method are:

¢ its complexity in terms of mesh operations used;
e performance, inferior to that of the level set method;

o However, it also has significant advantages:

e numerical diffusion due to the interface tracking method alone is
residual and controllable;
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Conclusions

e The main drawbacks of the DSC method are:

¢ its complexity in terms of mesh operations used;

¢ performance, inferior to that of the level set method;
o However, it also has significant advantages:

e numerical diffusion due to the interface tracking method alone is
residual and controllable;

e it provides explicit representation of the interface, which does not
change gratuitously between steps;
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Conclusions

e The main drawbacks of the DSC method are:
¢ its complexity in terms of mesh operations used;
¢ performance, inferior to that of the level set method;
o However, it also has significant advantages:
e numerical diffusion due to the interface tracking method alone is
residual and controllable;
e it provides explicit representation of the interface, which does not
change gratuitously between steps;
e it naturally supports multiple phases;
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Conclusions

e The main drawbacks of the DSC method are:

its complexity in terms of mesh operations used;

e performance, inferior to that of the level set method;
o However, it also has significant advantages:

numerical diffusion due to the interface tracking method alone is
residual and controllable;

it provides explicit representation of the interface, which does not
change gratuitously between steps;

it naturally supports multiple phases;

intrinsic collision detection mechanism offers a possibility for
topology control;
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Conclusions

e The main drawbacks of the DSC method are:

its complexity in terms of mesh operations used;
performance, inferior to that of the level set method;

¢ However, it also has significant advantages:

numerical diffusion due to the interface tracking method alone is
residual and controllable;

it provides explicit representation of the interface, which does not
change gratuitously between steps;

it naturally supports multiple phases;

intrinsic collision detection mechanism offers a possibility for
topology control;

if offers a unified computational and interface tracking framework
for FEM simulations;

M. K. Misztal Deformable Simplicial Complex



	Method
	Overview
	2D Version
	3D Version

	Implementation
	Implementation

	Examples
	Results
	Performance


