
Faster Regular Expression Matching

Philip Bille1? and Mikkel Thorup2

1 Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
phbi@imm.dtu.dk

2 AT&T Labs—Research, Shannon Laboratory, 180 Park Avenue, Florham Park, NJ
07932, USA. mthorup@research.att.com

Abstract. Regular expression matching is a key task (and often the
computational bottleneck) in a variety of widely used software tools and
applications, for instance, the unix grep and sed commands, scripting
languages such as awk and perl, programs for analyzing massive data
streams, etc. We show how to solve this ubiquitous task in linear space
and O(nm(log log n)/(logn)3/2+n+m) time where m is the length of the
expression and n the length of the string. This is the first improvement for
the dominant O(nm/ logn) term in Myers’ O(nm/ logn+ (n+m) logn)
bound [JACM 1992]. We also get improved bounds for external memory.

1 Introduction

Problem Regular expression matching is performed commonly as a primitive by
many of today’s computer systems, and has been so for almost half a century.
With unix/linux, or on a Mac, we match regular expressions in large file sys-
tems using the command line utility grep. With the stream editor sed we further
specify a replacement of the occurrences of the regular expression. A more inte-
grated use of regular expression matching is found in the general text processing
language perl [25] which is commonly used to convert between input/output
formats. One of the basic features in perl is to match regular expressions and
substitute some of the subexpressions. The regular expression matching is often
the hard part whereas the subsequent substitution is easy, so if we could improve
regular expression matching, we would improve a lot of data processing.

Historically, regular expression matching goes back to Kleene in the 1950s
[14]. It became popular for practical use in text editors in the 1960s [24]. Compil-
ers use regular expression matching for separating tokens in the lexical analysis
phase [2]. New and interesting applications continue to appear in diverse ar-
eas such as XML querying [15, 18], protein searching [21], and Internet traffic
analysis [12,27].

Computational model We study the complexity of regular expression match-
ing on the RAM model with standard word operations. This means that our

? Supported by the Danish Agency for Science, Technology, and Innovation. Work
done while the author was at the IT University of Copenhagen.

algorithms can be implemented directly in standard imperative programming
languages such as C [13] or C++ [23]. For the last thirty years, these program-
ming languages have been commonly used to write efficient and portable code.
Even if we code the main program in some higher level programming language,
it is normally possible to invoke subroutines written in C for parts that have to
run efficiently, and computational efficiency is what we study here. Most open
source implementations of algorithms for regular expression, e.g., grep, sed and
perl, are written in C. In practice, it would be impressive to gain a factor 2 in
speed for this well-studied problem, but as theoreticians we will focus on get-
ting the best asymptotic worst-case running time in terms of the problem size
n→∞.

Current Bounds Let n and m be the lengths of the string Q and the regular
expression R, respectively. Typically we assume n > m. The classical textbook
solution to the problem by Thompson [24] from 1968 takes O(nm) time. It uses
a standard state-set simulation of a non-deterministic finite automaton (NFA)
with O(m) states produced from R. Using the NFA, we scan Q. Each of the n
characters is processed in O(m) time by progression of the NFA state set.

In 1985 Galil [9] asked if a faster algorithm could be derived. Myers [19] met
this challenge in 1992 with an O(nm/ log n+ (n+m) log n) time solution, thus
improving the time complexity of Thompson algorithm by a log n factor for most
values of n and m. Since then there has been several works mostly addressing
issues of space and larger word length [4,5,22]. However, with no special assump-
tions on the word length the O(nm/ log n) term from Myers’ algorithms has not
been touched. The fundamental reason is that all the previous approaches aim to
speed-up the O(m) time the NFA needs to process one character from the string.
To do that we need at least Ω(m/w) time just to read or write the state set of
the NFA. In fact, Bille [4] obtained this bound within a logw factor. However,
we may have w = O(log n), so in terms of m and n, there is no hope of bypassing
Myers’ logarithmic improvement when working on one character at the time.

New Bounds In this paper we present a linear space regular expression matching
algorithm with a running time of

O

(
nm log log n

log3/2 n
+ n+m

)
.

If the alphabet is bounded or if m ≤ n1−ε for some positive constant ε, we can
avoid the log log n factor, getting a cleaner time bound of O(nm/(log n)3/2 +n+
m). In any case, assuming m,n ≥ log3/2 n, this increases the improvement over
Thompson’s O(nm) algorithm from the log n factor of Myers to almost a factor
(log n)3/2.

We bypass the logarithmic limitation of previous approaches with a speed-up
for the NFA processing of multiple characters at the time. This is, in itself, an
obvious idea, but challenging to realize due to the complex interaction between
the NFA and the input string (c.f. discussion at the end of Sec. 3)

Tabulation Our improved time bound is achieved via a better tabulation tech-
nique. The idea of using tables to improve calculations is old. As a nice early ex-
ample, in 1792, Gaspard de Prony started preparing nineteen volumes of trigono-
metric and logarithm tables for the revolutionary French government. With the
assistance of a small group of mathematicians, Prony divided the computations
into a series of additions and subtractions. He then hired about eighty (human)
computers to do the arithmetic.

Tabulation is also used on today’s computers for the fastest regular expression
matching. In particular, the implementation of Myers’ algorithm [19], the agrep
tool [26] and the nrgrep tool [20] are all based on tabulations of NFAs, and
they outperform other tools. The basic point is to use table look-ups to replace
a complicated NFA simulation that would look up transitions from multiple
states.

Tabulation is a speed-up technique that only makes sense after we have
settled on the basic combinatorial algorithm, in this case Thompson’s algo-
rithm which has stood unbeaten since 1968. In fact, this might very well be
the asymptotically fastest worst-case efficient algorithm for regular expression
matching if we ignore polylogarithmic factors. The goal in tabulation is now to
compactly represent as complex subproblems as possible. Our contribution is
to show that we with x bits can represent subproblems requiring Θ(x3/2/ log x)
steps in Thompson’s algorithm. The limit of all previous tabulation approaches
to this problem was to represent x steps with Θ(x) bits. We are breaking the
linear bound by moving into a higher dimension of encoding, representing both
part of the NFA and part of the input string in the x bits. Higher dimensional
encodings are known for several other problems [3,6,16] but combining the NFA
and string dimensions has been a challenge for regular expression matching.

Our encoding allows us to construct fixed universal tables that can later be
used to solve arbitrary regular expression problems. The tables are constructed
once and for all in O(2x) time and space. Using them we can match an expression
of size m in a text of size n in O(nm(log x)/x3/2 + n+m) time, and this works
well even in a streaming context. For the previous mentioned bounds, we could
set x = (log2 n)/2 thus using O(

√
n) time and space on the tables. However, the

same tables can be used to solve many regular expression matching problems.
Therefore we may chose a larger x to create some large and powerful tables once
and for all. These could be used when running perl where we often need to
match many different regular expressions in a text.

External memory Our coding technique gives corresponding speed-ups for ex-
ternal memory with block size B and internal memory size M ≥ B. Of course
M and B could also represent smaller units in the memory hierarchy, e.g., cache
of size M registers and cache line of length B. If m = o(M), it is trivial to solve
the regular expression matching problem withO(n/B) I/O operations. Assuming
m = Ω(M) we solve the problem with O(nm/(

√
MB)) I/O operations. This is a

factor
√
M better than what would be possible with previous algorithms regard-

less of the block size. Technically speaking, we use the internal memory to pack
subproblems of complexity M3/2 in Thompson’s algorithm. Each subproblem is

read with M/B I/O operations, so the saving is a factor M3/2/(M/B) =
√
MB.

Previous solutions could only pack problems of complexity linear in M , so they
could only save a factor M/(M/B) = B. In particular, our algorithm is the first
to gain substantially in I/O operations from a large internal memory even if the
blocks are small.

Summing up The theorem below formally states our results in terms of a resource
parameter t capturing how much time and space we are willing to spend on the
global tables.

Theorem 1. On a unit-cost RAM with word length w and standard instruction
set, for any parameter t < 2w, we can do a general preprocessing for regular
expression matching using O(t) time and space. Subsequently, given any regular
expression of length m and string of length n, we can perform the matching in

O

(
nm log log t
(log t)3/2

+ n+m

)
time using O(t + m) space. Our matching only makes a single pass through the
string, which may hence be presented as a stream.

Cast in terms of external memory with block size B and internal memory size
M , 2B ≤ M = O(m), we solve the regular expression matching problem with
O(nm/(

√
MB)+m/B · logM/B(m/B)) I/O operations using O(m) space. Again

we only perform a single pass over the string. After an O(m/B · logM/B(m/B))
preprocessing of the pattern, we process string segments of length Θ(

√
M) using

O(m/B) I/O operations.

As mentioned above, in many practical applications it makes sense once and for
all to do the preprocessing with a fairly large t, fitting within the bounds of
fast memory, and subsequently be able to solve lots of smaller regular expression
matching problems quickly.

In connection with very large data, note how the unit-RAM result and the
external memory result complement each other. In both cases, the string may be
a stream passed only once, which is perfect. In the normal case where m = o(M),
we pick a large t such that the O(t+m) space fits in internal memory, and use the
unit-RAM algorithm to process the stream in O(n/B) I/O operations. However,
in the extreme event that m = Ω(M), we apply our external memory algorithm.

Overview In this extended abstract, we only have room to present our algorithm
for bounded size alphabets on the unit-cost word RAM. In Sec. 2 we define
Thompson’s standard automaton construction for regular expressions [24] and
in Sec. 3 we describe how we decompose this automaton as done in the previous
algorithms with logarithmic speedup. After that, we embark on our new attack
on the problem. Our decomposition is different from that of Myers [19] because
we want to tabulate the action of subautomatons, not just on a single input
character, but on substrings of input characters. In Sec. 4 we describe the actual
action of subautomatons on substrings and how to tabulate it.

2 Regular Expressions and Finite Automata

First we briefly review the classical concepts used in the paper. For more details
see, e.g., Aho et al. [2]. The set of regular expressions over Σ are defined recur-
sively as follows: A character α ∈ Σ is a regular expression, and if S and T are
regular expressions then so is the concatenation, (S) · (T), the union, (S)|(T),
and the star, (S)∗. The language L(R) generated by R is defined as follows:
L(α) = {α}, L(S · T) = L(S) · L(T), that is, any string formed by the concate-
nation of a string in L(S) with a string in L(T), L(S)|L(T) = L(S)∪L(T), and
L(S∗) =

⋃
i≥0 L(S)i, where L(S)0 = {ε} and L(S)i = L(S)i−1 · L(S), for i > 0.

Here ε denotes the empty string. The parse tree T (R) for R is the unique rooted
binary tree representing the hierarchical structure of R. The leaves of T (R) are
labeled by a character from Σ and internal nodes are label by either ·, |, or ∗.

A finite automaton is a tuple A = (V,E,Σ, θ, φ), where V is a set of nodes
called states, E is a set of directed edges between states called transitions each
labeled by a character from Σ ∪ {ε}, θ ∈ V is a start state, and φ ∈ V is an
accepting state3. In short, A is an edge-labeled directed graph with a special start
and accepting node. A is a deterministic finite automaton (DFA) if A does not
contain any ε-transitions, and all outgoing transitions of any state have different
labels. Otherwise, A is a non-deterministic automaton (NFA). If dealing with
multiple automatons, we use a subscript A to indicate information associated
with automaton A, e.g., θA is the start state of automaton A.

Given a string q and a path p in A we say that p and q match if the con-
catenation of the labels on the transitions in p is q. We also say that two paths
p and p′ match if they match the same string. The set of strings matching some
path between states s and s′ in A is denoted by PA(s, s′). For state-sets S and
S′ we define PA(S, S′) =

⋃
s∈S,s′∈S′ PA(s, s′). For a subset S of states in A

and a string Q, define the state-set transition, δA(S, q), as the of states reach-
able from S through a path matching q. We say that A accepts the string q
if q ∈ PA(θA, φA). Otherwise A rejects q. One may use a sequence of state-set
transitions for a single character to test acceptance of a string Q of length n as
follows. First set S0 := {θA}. For i = 1, . . . , n compute Si := {δA(Si−1, Q[i])}.
It follows inductively that q is accepted if and only if φA ∈ Sn.

Given a regular expression R, an NFA A accepting precisely the strings
in L(R) can be obtained by several classic methods [10, 17, 24]. In particular,
Thompson [24] gave the simple well-known construction in Fig. 1. We will call
an automaton constructed with these rules a Thompson NFA (TNFA). Fig. 2
shows the TNFA for the regular expression R = a·(a∗)·(b|c), along with lots
of other information to be discussed in later sections.

A TNFA N(R) for R has at most 2m states, at most 4m transitions, and
can be computed in O(m) time. With a breadth-first search of A we can com-
pute a state-set transition for a single character in O(m) time. Hence, we can

3 Sometimes NFAs are allowed a set of accepting states, but this is not necessary for
our purposes.

(a) (b)

(c)
(d)

α

N(S)

N(T)

ε

N(T)

N(S)

N(S)
ε

ε

ε

ε

ε

ε ε

θ

θ
θ

θφ

φ
φ

φ

Fig. 1. Thompson’s recursive NFA construction. The regular expression for a character
α ∈ Σ corresponds to NFA (a). If S and T are regular expressions then N(ST),
N(S|T), and N(S∗) correspond to NFAs (b), (c), and (d), respectively. In each of these
figures, the leftmost node θ and rightmost node φ are the start and the accept nodes,
respectively. For the top recursive calls, these are the start and accept nodes of the
overall automaton. In the recursions indicated, e.g., for N(ST) in (b), we take the start
node of the subautomaton N(S) and identify with the state immediately to the left of
N(S) in (b). Similarly the accept node of N(S) is identified with the state immediately
to the right of N(S) in (b).

test acceptance of a string Q of length n in O(nm) time. This is Thompson’s
algorithm [24].

3 1-Dimensional Speed-Up

Myers’ algorithm [19] and later variants [4, 5] all aim to speed-up Thompson’s
algorithm by improving the O(m) bound for a state-set transition for a single
character. We describe this approach in some detail below as we are going to
reuse much of it our own algorithm. The version we present is for bounded size
alphabets, i.e., each character can be coded with a constant number of bits.

For a desired speed-up of x < w, we will need some global tables of size 2O(x).
First we decompose N(R) into a tree AS of O(dm/xe) micro TNFAs, each of
size at most x. In each A ∈ AS, each child TNFA C is represented by a start
and accepting state and a pseudo-transition labeled β 6∈ Σ connecting these. For
example, Fig. 2, shows the TNFAs for the regular expression R = a·(a∗)·(b|c)
divided into 3 TNFAs AS = {A1, A2, A3}, where A1 = N(a∗), A2 = N(b|c),
and A3 = N((a · β · β)∗). Here the βs represent A1 and A2, respectively. We
can always construct a decomposition of N(R) as described above since we can
partition the parse tree into subtrees using standard techniques and build the
decomposition from the TNFAs induced by the subtrees, see e.g., Myers [19] for
details.

The point in such a micro TNFA A is that we can code it uniquely via
its parse tree using O(x) bits. We shall use “A” to denote the bit coding of
A. If x = o(logm), there will be many micro TNFAs with the same bit code.
Technically A is an index to all information associated with A including both
the code “A” and the children and parents of A. Since A has only x states, we

can also code its local state set SA using x bits. Thus we can make a universal
table T of size 2O(x) that for every possible micro TNFA A of size ≤ x, local
state set SA, and α ∈ Σ ∪ {ε}, provides T [“A”, SA, α] = δA(SA, α) in constant
time. Note that parents and children share some local states, and these states
will have to be copies between their local state bitmaps.

Recall that our target is to compute a state-set transition δN(R)(S, α) for
a single character α ∈ Σ. First we should traverse transitions labeled α from
S and then traverse paths of ε-transitions. The challenge here is that paths of
ε-transition may lead to distant TNFAs in the decomposition resulting in non-
trivial dependencies between TNFAs. For example, suppose we start with state
set S = {1} in Fig. 2, and that we get the input character a. First we follow
the only relevant a-transition in A3 to state 2. Next we follow ε-transitions in
A1, leading us to states 3 and 5, and from there we follow ε-transitions in A2 to
states 6 and 8. We end up concluding that δN(R)({1}, a) = {2, 3, 5, 6, 8}.

Following the character transitions of α is in itself easy using our global ta-
ble T . For every micro TNFA independently, we take the current local state set
SA and compute S′A = T [“A”, SA, a] = δA(SA, α). To handle the subsequent
ε-transitions, Myers prove that any cycle-free path of ε-transition in a TNFA
uses at most one of the back transitions we get from the star operators. This
implies that we can compute the ε-closure in two depth-first traversals of the
decomposition. Each of these traversals starts at the root, and are defined re-
cursively for subtrees. When the traversal visits a micro TNFA A, it first sets
S′A = T [A,S′A, ε]. Next, considering the children in order, one C at the time,
it copies the accept state θC from S′A to S′C , perform an depth-first traversal
down from C, and copy the accept state φC from S′C to SA. Finally, it sets
S′A = T [A,S′A, ε], and continue to the next child if any. If there were no back
transitions, we would need only one such depth-first traversal. The total time
we spend on a micro TNFA A is a constant plus a constant per child, adding up
to O(|AS|) = O(dm/xe) total time.

The above algorithm assumes that we have built the global table T in 2O(x)

time and space. It also requires that we for a new regular expression R first
construct the decomposition AS, and for each micro TNFA A ∈ AS find the bit
code “A”, but all this takes linear time. Thus, in total we can perform regular
expression matching in time O(nm/x+ n+m).

To get a better time bound, we have to deal with an input segment q of super-
constant length, yet we may only use constant time per micro TNFA. One basic
problem is that we have to consider matching paths that leave a micro TNFA and
returns as many times as there are characters in q, making a constant number of
depth-first traversal sound elusive. Also, each state can correspond to multiple
positions in q, but generally, we can only use a constant number of bits per state.

4 2-Dimensional Speed-Up

We will now show how to extend the 1-dimensional speed-up algorithm from the
previous section to handle an input segment of length y =

√
x within the same

O(dm/xe) time bound that we used before on a single character. We are going
to use some different global tables, but their total size will still be 2O(x).

We will need to impose the restriction on the decomposition that each micro
TNFA has at most two children. We get this if we decompose the parse tree
using the tree partition technique that Frederickson [7] used for topology trees.
As before, we get a decomposition tree AS of O(dm/xe) micro TNFAs, each of
size at most x, and now of with at most two children.

As useful new definitions, for any A ∈ AS, define A to be the TNFA induced
by all states in A and descendants of A in the decomposition, and for any state-
set S define S|A to be the restriction of S to states in A.

Recall that one of our challenges we have is that a path p matching q may go
in and out of the same micro TNFA many times. We are going to shortcut any
downwards loop, that is, a segment s of p that leaves a micro TNFA A to go to
a child C and later returns from C to A. When all downwards loops have been
shortcut, we are left with a path p with a first part going up the decomposition
tree, and a second part going down the decomposition tree. Either part may be
empty. The basic point here is that we can follow all such shortcut paths if we
do a bottom-up traversal followed by a top-down traversal.

The special thing about the downwards loop s going from A to a child C and
later returning is that it matches an interval q[i, j] of q that is accepted by C.
To shortcut the loop, we augment A with the information about all substrings
accepted by C, and do that for each of the at most 2 children of A. Even though
C may be very large, there are only

(|q|
2

)
+ |q| + 1 =

(|q|+1
2

)
= O(y2) = O(x)

possible intervals of q.
In Sec. 4.1 we first show how to compute the augmented micro TNFAs and in

Sec. 4.2 we show how to use this information to compute state-set transitions. We
put the pieces together in Sec. 4.3 to get the full algorithm for regular expression
matching.

4.1 Computing Accepted Substrings

In a single bottom-up traversal of the decomposition we construct for each A ∈
AS the set SSA of substrings of q accepted by A. These are represented as pairs
of indices (i, j), that is, (i, j) ∈ SSA iff A accepts q[i, j]. To compute SSA, we
first construct a “local” representation A(q) of A such that for any states s, s′

in A, we have
PA(q)(s, s′) = PA(s, s′).

We construct A(q) from A and the set SSC from each child C of A if any. More
precisely, we replace the pseudo-edge for child C with an NFA accepting the set
of substrings of q indexed by SSC . Having constructed A(q), we compute the set
SSA from A(q) as

SSA := {(i, j) | q[i, j] is accepted by A(q)}.

We use the pair (1, 0) as a unique representation of the empty substring. In our
example in Fig. 2, A1 accepts q[1, 0] = ε, q[1, 1] = a, q[1, 2] = aa, and q[2, 2] = a

a

εA1
A3

S = {1, 3}
q = aab

SSA1 = {(1, 0), (1, 1), (1, 2), (2, 2)} SSA2 = {(3, 3)} SSA3 = {(1, 3), (2, 3)}

PPφ
A1

= {1, 2} PPφ
A2

= ∅ PPφ
A3

= {3}
PPθ

A1
= {1} PPθ

A2
= {1, 2} PPθ

A3
= {0}

S′
A1

= ∅ S′
A2

= {7, 10} S′
A3

= {10}

8

76

54
A2

ε ε

εε

c

b
A1 = N(a∗)

A3 = N(a · β · β)
A2 = N(b|c)

(a)

(b)

(c)

R = a·(a∗)·(b|c)

1
ε

2 3 4 5

6 7

8 9

10

A1(q) = N(ε|a|aa) A2(q) = N(b)

a
ε ε

A3(q) = N(a · (ε|a|aa) · b)

Fig. 2. (a) TNFA N(R) for regular expression R = a·(a∗)·(b|c). N(R) is decomposed
into 3 TNFAs AS = {A1, A2, A3}, where A1 = N(a∗), A2 = N(b|c), and A3 =
N((a ·β ·β)∗). Here the βs represent A1 and A2, respectively. The root of AS is A3 and
A1 and A2 are children of A3. (b) The accepted substrings of q = aab (the index (1, 0)
indicates the empty string) and A1(q), A2(q), and A3(q). (c) The state-set transition
computation for each phase on q on the state-set S = {1, 3}.

and A2 accepts q[3, 3] = b. Therefore SSA1 = {(1, 0), (1, 1), (1, 2), (2, 2)} and
SSA2 = {(3, 3)}. Thus A1(q) = N(ε|a|aa) and A2(q) = N(b). Inserting A1(q)
and A2(q) in A3 we get A3(q) = N(a · (ε|a|aa) · b), accepting q[1, 3] = aab and
q[2, 3] = ab, hence SSA3 = {(1, 3), (2, 3)}.

Encoding and Tabulation We encode q as a bit string “q” of length O(y) and
SSA as a bit string “SSA” with a bit for each possible interval of q, hence of
length

(|q|
2

)
+ |q| + 1 =

(|q|+1
2

)
= O(y2) = O(x). Our encoding “A(q)” of A(q)

consists of the bit-coding “A” of A from Sec. 3 followed by “q” and then the
interval end-points in “SSC” for each child C of A, that is,

“A(q)” = (“A”, “q”, {“SSC” | C child of A}).
Thus “A(q)” is represented with O(x+ y + y2) = O(x) bits. We precompute a
global table SS providing

“SSA” = SS[“A(q)”]

as a constant time look-up. The entries take O(x) bits, so the table can be
constructed in 2O(x) time and space. Subsequently, for any substring q of length
at most y, we can compute “SSA” and “A(q)” for every A ∈ AS in a bottom-up
traversal in O(dm/xe) total time.

4.2 Computing State-Set Transitions

We now show how to compute state-set transitions using the “SSA” and “A(q)”
computed above. We divide the algorithm into 3 phases. The first phase computes
the set of prefixes of q that match a path from S|A to φA within A, the second
phase computes the set of prefixes of q that match a path from S to φA in N(R),
and finally, the third phase computes the local S′A = δN(R)(S, q))|A.

Phase 1: Computing path prefixes in A to φA The first phase is a bottom-up
traversal. For each A ∈ AS, it computes the set PPφA of prefixes of q matched by
a path in A from S|A to the accept state φA of A. The prefixes are represented
via their end indices, so j ∈ PPφA iff q[1, j] ∈ PA(S|A, φA). The set PPφA is
constructed from A(q) and the sets PPφC from the children C of A:

PPφA := {j | q[1, j] ∈ PA(q)(SA, φA)} ∪⋃
C child of A

{j | i ∈ PPφC and q[i+ 1, j] ∈ PA(q)(φC , φA)}

In Fig. 2 we can reach φA1 from state 3 in A1(q) using q[1, 1] or q[1, 2] and
therefore PPφA1

= {1, 2}. There are no states from S in A2 so PPφA2
= ∅. Finally,

we can reach φA3 both from state 1 and 3 parsing q[1, 3] so PPφA3
= {3}.

Phase 2: Computing path prefixes in N(R) to θA The second phase is a top-
down traversal of the decomposition. For each A ∈ AS we compute the set
PPθA of prefixes of q matched by a path in all of N(R) from S to the start
state θA of A. The prefixes are represented via their end indices, so j ∈ PPφA iff
q[1, j] ∈ PN (S, θA).

If A is the root automaton, we trivially have PPθA = {0} if θA ∈ S and
otherwise PPθA = ∅. Hence we may assume that A has a parent B, and we will
use PPθB to compute PPθA. We also use B(q) and PPφC from phase 1 for each
child C of B, including C = A. The computation is now done as

PPθA :={j | q[1, j] ∈ PB(q)(SB , θA)}
∪ {j | i ∈ PPθB and q[i+ 1, j] ∈ PB(q)(θB , θA)}
∪

⋃
C child of B

{j | i ∈ PPφC and q[i+ 1, j] ∈ PB(q)(φC , θA)}

In Fig. 2 we have that PPθA3
= {0}. We can reach θA1 with q[1, 1] from state

1 in A3(q) and hence PPθA1
= {1}. We can reach θA2 with q[1, 1] and q[1, 2] in

A3(q) from state 1 and hence 1, 2 ∈ PPθA2
. From PPφA1

= {1, 2} we also get that
1, 2 ∈ PPθA2

. Hence, PPθA2
= {1, 2}.

Phase 3: Updating state-sets The third and final phase traverses the decomposi-
tion in any order. For each A ∈ AS, we compute the S′A = δN(R)(S, q)|A. Then
the desired state set transition S′ = δN(R)(S, q) is just the union of these sets.
Recall that y = |q|.

The set S′ is now computed based on A(q), PPφC from phase 1 for each child
C of A, and PPθA from phase 2:

S′A := {s′ | q ∈ PA(q)(SA, s′)} ∪ {s′ | i ∈ PPθA and q[i+ 1, y] ∈ PA(q)(θA, s′)} ∪⋃
C child of A

{s′ | i ∈ PPφC and q[i+ 1, y] ∈ PA(q)(φC , s′)}

In Fig. 2 we have that S′A1
= ∅, S′A2

= {7, 10}, and S′A3
= {10}, so S′ =

δN(R)(S, q) = {7, 10}.

Encoding and Tabulation We encode each of the sets PPφA and PPθA as bit strings
“PPφA” and “PPθA” of length y =

√
x where the jth bit is set iff the index j is

in the set. The output set S′A is represented as the input set SA with a local bit
string “S′A” of length x.

For phase 1, we have a table PPφ so that we can set

“PPφA” := PPφ[“A(q)”, “SA”, {“PPφC” | C child of A}].

For phase 2, we have a table PPθ so that for a child A of B, we can set

“PPθA” := PPθ[“B(q)”, “SB”, “PPθB”, {“PPφC” | C child of B}].

Finally, for phase 3, we have a table S′, so that we can set

“S′A” := S′[“A(q)”, “SA”, “PPθA”, {“PPφC” | C child of B}].

The entries in each table use O(x) bits and hence we can construct the tables in
2O(x) time and space. It follows that given any state-set S and input segment q
of length at most y, we can compute δN(R)(S, q) in O(dm/xe) total time.

Note that the construction only depends on the fixed alphabet Σ, and the
parameters x and y, so the tables may be reused for any regular expression
matching problem over the same alphabet.

4.3 The Algorithm

Let t < 2w be a bound on the space devoted to tables. Choosing x = y2 = ε log t
we construct and build all tables in O(t) time and space. Given a regular expres-
sion R of length m and a string Q of length n, we solve the regular matching
problem using dn/ye state-set transitions computations as described above. To
process a new input segment, we only need the global tables, the O(m) space de-
composition of R, and the state-set resulting from the preceeding input. Hence,
the full algorithm uses space O(t + m) and time O(m + (m/x + y) · n/y) =
O(n+m+ nm/ log3/2 t). Note that if Q is represented as a stream, we are sim-
ply processing substrings of length y, one at the time in a single pass, and hence
our algorithm also works in this context.

References

1. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Comm. ACM, 31(9):1116–1127, 1988.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

3. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economic
construction of the transitive closure of a directed graph. Dokl. Acad. Nauk.,
194:487–488, 1970.

4. P. Bille. New algorithms for regular expression matching. In Proc. 33rd ICALP,
LNCS 4051, pages 643–654, 2006.

5. P. Bille and M. Farach-Colton. Fast and compact regular expression matching.
Theoret. Comput. Sci., 409:486 – 496, 2008.

6. T. M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. In
Proc. 39th STOC, pages 590–598, 2007.

7. G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity
and k smallest spanning trees. SIAM J. Comput., 26(2):484–538, 1997. Announced
at FOCS’91.

8. M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. System Sci., 48(3):533–551, 1994.

9. Z. Galil. Open problems in stringology. In A. Apostolico and Z. Galil, editors,
Combinatorial problems on words, NATO ASI Series, Vol. F12, pages 1–8. 1985.

10. V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys, 16(5):1–
53, 1961.

11. T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. J. Algo-
rithms, 41(1):69–85, 2001.

12. T. Johnson, S. Muthukrishnan, and I. Rozenbaum. Monitoring regular expressions
on out-of-order streams. In Proc. 23nd ICDE, pages 1315–1319, 2007.

13. B. Kernighan and D. Ritchie. The C Programming Language (2nd Ed.). Prentice-
Hall, 1988. First edition from 1978.

14. S. C. Kleene. Representation of events in nerve nets and finite automata. In
Automata Studies, Ann. Math. Stud. No. 34, pages 3–41. 1956.

15. Q. Li and B. Moon. Indexing and querying XML data for regular path expressions.
In Proc. 27th VLDB, pages 361–370, 2001.

16. W. Masek and M. Paterson. A faster algorithm for computing string edit distances.
J. Comput. System Sci., 20:18–31, 1980.

17. R. McNaughton and H. Yamada. Regular expressions and state graphs for au-
tomata. IRE Trans. on Electronic Computers, 9(1):39–47, 1960.

18. M. Murata. Extended path expressions of XML. In Proc. 20th PODS, pages
126–137, 2001.

19. E. W. Myers. A four-russian algorithm for regular expression pattern matching.
J. ACM, 39(2):430–448, 1992.

20. G. Navarro. NR-grep: a fast and flexible pattern-matching tool. Softw. Pract.
Exper., 31(13):1265–1312, 2001.

21. G. Navarro and M. Raffinot. Fast and simple character classes and bounded
gaps pattern matching, with applications to protein searching. J. Comp. Biol-
ogy, 10(6):903–923, 2003.

22. G. Navarro and M. Raffinot. New techniques for regular expression searching.
Algorithmica, 41(2):89–116, 2004.

23. B. Stroustrup. The C++ Programming Language: Special Edition (3rd Ed.).
Addison-Wesley, 2000. First edition from 1985.

24. K. Thompson. Regular expression search algorithm. Comm. ACM, 11:419–422,
1968.

25. L. Wall. The Perl Programming Language. Prentice Hall Software Series, 1994.
26. S. Wu and U. Manber. Agrep – a fast approximate pattern-matching tool. In Proc.

USENIX, pages 153–162, 1992.
27. F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast and memory-

efficient regular expression matching for deep packet inspection. In Proc. ANCS,
pages 93–102, 2006.

A Handling Arbitrary Alphabets

We extend the result of Sec. 3 to larger alphabets. The basic idea is to work
locally with much smaller alphabets with O(log log t)-bit characters where t as
in the previous sections is the bound on the resources we are devoting to the
global tables. We follow an idea of Bille and Farach-Colton [5] for the string edit
distance problem. Note that for all our bounds, we can assume t ≥ m, for if
t < m, we can create global tables as part of the O(m) time and space spent on
the concrete matching.

In the previous section, we assumed constant alphabet size. We will now
incorporate the effect of a non-constant alphabet size σ, hence dlog σe-bit char-
acters. The consequence for our encoding is that we now need O(x log σ) bits to
represent a subautomaton of size x, and O(y log σ) bits to represent a substring
q of length y. However, the larger alphabet does not affect the representation of
indices into q. In particular, for SSA, we still need less than y2 bits to represent
all pairs of indices marking the start and end of substrings of q accepted by
A(q). It follows that we can represent every index and entry of the global tables
in O(x log σ + y2 + y log σ) bits. We will end up using an alphabet of size at
most (log t)2. Setting x = ε log t/ log log t and y2 = ε log t for some sufficiently
small constant ε > 0, we will be able to construct the tables in O(t) time and
space like in the previous sections. With alphabet size bounded by (log t)2, the
matching time becomes

O (m+ (m/x+ y) · n/y) = O(n+m+ nm(log log t)/(log3/2 t)).

Reducing the alphabet size We now have to reduce the alphabet size. First we
consider the “normal” case where both n and m are at least (log t)2. This means
that our matching time is dominated by the second degree term O(nm/(xy)) =
O(nm(log log t)/(log t)3/2).

Recall that in the processing of the regular expression, we enumerated the
subautomatons A ∈ AS in bottom order, using this order directly in bottom-up
traversals (phase 1 and 2), and inversely in top down traversals (phase 3 and
4). Continuing the processing of the regular expression, we group the subau-
tomatons into segments of y consecutive subautomatons. For each group, we
construct a deterministic dictionary over all the characters in the subautoma-
tons in the group. We have at most xy such characters, and in addition, we need
an error character. The dictionary maps any character from the original alpha-
bet into {0, ..., xy} in constant time. The group characters are mapped 1-1 into
{1, ..., xy}, and all non-group characters are mapped to 0. Having constructed
a group dictionary, we use it to convert all characters in the automatons in the
group. We have xy = ε log t/ log log t · √ε log t � log2 t, so our global tables
apply to these converted automatons.

Each group has at most xy characters. A group dictionary using O(xy) space
can be constructed deterministically in O(xy log(xy)) = O(xy log log t) time [11].
The character conversion within the group is done in O(xy) time. The number of
subautomaton groups is O(m/(xy)), so the group dictionaries and the converted

subautomatons are constructed in O(m log log t) time and O(m) space. We are
now done with the processing of the pattern. Note that since m,n > log2 t we
have that O(m log log t) = o(nm(log log t)/(log t)3/2).

We will now process the string, processing one substring Qi of length y at
the time. To compute the state transition Si = δN(R)(Si−1, Qi), in each phase,
every time we get to a new automaton group, we use the group dictionary to
convert the characters of Qi into those of the group, in O(y) time. Each group
is used once in each of four phases, and there are m/(xy) groups, so the total
character conversion time is O(ym/(xy)) = O(m/x), matching the time we use
for the table based state transition with the converted characters. Thus, using
the global tables, we end up performing the whole regular expression matching
in O(nm/(xy)) = O(nm(log log t)/(log t)3/2) time.

Next we prepare for the extreme case where either the regular expression or
the string is of size less than (log t)2. An easy theoretical solution is to employ
atomic heaps of Fredman and Willard [8]. As part of the O(t) time and space
preprocessing, we get atomic heaps with capacity for up to (log t)2 elements.
These are very general, but we will just use them as dynamic dictionaries sup-
porting both updates and queries in constant amortized time. If, say, the regular
expression R is of size m < (log t)2, using an atomic heap, we create a dictionary
over the characters in R in O(m) time, and use it to convert all characters in
both the regular expression and in the string Q in linear time. The case where
the sting Q is of size n < (log t)2, is symmetric. In both cases, we pay linear
time to get a converted alphabet of size at most (log t)2. We have thus shown
the unit-cost RAM part of Theorem 1:

Theorem 2. On a unit-cost RAM with word length w and standard instruction
set, for any parameter t < 2w, we can do a general preprocessing for regular
expression matching using O(t) time and space. Subsequently, given any regular
expression of length m and string of length n, we can perform the matching in

O

(
nm log log t
(log t)3/2

+ n+m

)
time using O(t + m) space. Our matching only makes a single pass through the
string, which may hence be presented as a stream.

A.1 An alternative for large alphabets

We will add a simple alternative to Theorem 2 for large alphabets.

Theorem 3. Given any regular expression of length m and string of length n
and some t ≥ m1+ε for constant ε > 0, we can solve the regular expression
matching problem in

O

(
t+

nm

(log t)3/2
+ n

)
time using O(t) space. Our matching only makes a single pass through the string,
which may hence be presented as a stream.

Contrasting Theorem 2, this new result does not benefit from a global tabulation.
It does avoid the unappealing factor log log t but has the unappealing restriction
that t ≥ m1+ε. However, this seems the better choice when a fairly small regular
expression is matched against a large string.

The idea is very simple. Instead of encoding a subautomatonA usingO(x log log t)
bits, we just enumerate the automatons. There are only O(m/x) of them, so their
numbers need logm = (1− ε) log t bits. They remaining part of the indices uses
O(x + y2 + y log log t) bits. We can now use x = y2 = ε′ log t for some small
enough ε′ > 0 as we did for constant size alphabets, and thus get the same total
running time as we had there. However, we cannot use global tabulation, for
the subautomaton with number i is not known until we have decomposed the
regular expression.

B External Memory

We will now modify our techniques for external memory model with block size B
and internal memory size M ≥ B. Here in external memory we follow the usual
indivisibility assumption that characters and pointers are atomic units, and that
size is measured as the number of these units. Then sorting s characters requires
ext-sort(s) = Θ(s/B · logM/B(s/B)) I/O operations [1]. We are not going to
use any of the tabulation from our unit RAM solution. In external memory, the
point of packing hard subproblems is not to solve them by an expensive table
look-up. Rather, on a much larger scale, the point is to cluster hard subproblems
so that they can be quickly read into and processed in internal memory.

If m = o(M), the state-set simulation of N(R) can be carried out within
internal memory, and then it is trivial to perform regular expression matching
in O(n/B +m/B) I/O operations. Hence we assume m = Ω(M).

Performing each step in internal memory Our basic idea is to implement our
algorithm from Section 4 in such a way that each step can be completed in
internal memory. For some small constant ε, we use subautomaton size x = εM
and substring size y =

√
εM . The input and output of each step is of size

O(x+ y2) < M for sufficiently small ε.
For example, when computing the accepted substrings, the input of a step is

a subautomaton A of size x, a substring q of size y, and for each of at most two
children C of A, the set SSC of index pairs (i, j) such that C accepts q[i, j]. The
output is A(q) = (A, {SSC | C child of A} as well as the set SSA of index pairs
(i, j) such that A(q) accepts q[i, j].

Assuming that each subautomaton is stored with related information in con-
secutive blocks, we can read the input A, q, and SSC for each child of A in
O(M/B) I/O operations. We now need to show that we can compute SSA with-
out leaving internal memory. For each pair (i, j), 1 ≤ i ≤ j ≤ k, one at the time,
we need to parse q[i, j] checking if it is accepted by A(q).

So far we have said that A(q) represented that NFA obtained from A by
expanding the pseudo-edge of each child C to an NFA accepting the at most

y2 substrings of q indexed by SSC . However, the sum of the lengths of these
substrings may be Θ(y3) so the resulting NFA could have that many states.
Since M = O(y2), this would not fit internal memory.

We will now show how to run to A(q) within the O(x + y2) space we have
available. First, if C accepts the empty string, we emulate this with a separate
ε-transition, so we only need to consider non-empty substrings indexed by SSC .
We will grow an index set of the start state θC of each child C of A. Here while
parsing q[i, j], the index set of a state u in A is the set Iu = {k ∈ [i, j] | q[i, k] ∈
PA(q)(θA, u)}. Since |Iu| ≤ y, it is not a space problem to maintain Iu for the
start state of each child.

We will now parse the characters of q[i, j] one at the time. When we get to
character q[`], ` ∈ [i, j], we assume we know the state set Sk−1 of states u of A
such that q[i, k− 1] ∈ PA(q)(θA, u). Here S0 = {θA}. Moreover, for each child C,
the index set will be filled up to ` − 1, that is, IθC

= {k ∈ [i, ` − 1] | q[i, k] ∈
PA(q)(θA, θC)}. We now want to compute the new state set Sk. The important
point is that

φC ∈ Sk ⇐⇒ ∃k ∈ IθC
: [i, `] ∈ SSC .

This condition is easily checked in O(y) time not using any extra space, and
we just have to do it for each of the at most two children C. The rest of the
new state set Sk is found using the standard simulation of A in O(x) time. The
above is repeated for each i ≤ j ≤ k, so the total time is O(y2(x+ y)) while the
total space is O(x+y2) as desired. Afterward we write A(q) and SSA to external
memory using O(M/B) I/O operations.

The phases of the state-set computation are handled similarly. In total, we
use O(m/x) steps to deal with each substring of length at most y, so the total
number of I/O operations is O(m/x · n/y ·M/B) = O(nm/(

√
MB)).

Decomposition in external memory Above we assumed that we had the decom-
position AS of N(R) into subautomatons each of size x and stored in consecutive
blocks. We show how to do this in O(ext-sort(m)) time. Basically, we have to
do a cluster partitioning of the parse tree T = T (R) into clusters of size at most
x. Our algorithm is based on local edge contractions. For each node v in T we
maintain a weight representing the number of nodes contracted into v. Initially,
all nodes are given weight 1 and whenever we contract an edge (v, u) the weight
of the new node is w(v) +w(u). We use the following contraction rules. An edge
(v, u) where u is the parent of v and w(v) + w(u) < x can be contracted if

(i) v is leaf, or
(ii) v has no siblings.

Let T ′ be the tree resulting after applying (i) and (ii) greedily until no edges
can be contracted according the rules. From the rules it follows that T ′ is a
binary tree containing at most O(dn/xe) nodes and the weight of any node is
at most x. Hence, each node corresponds to a cluster in a cluster partition. It is
well-known from results on parallel tree contraction algorithms that if we apply
the rules in rounds, where each round first applies rule (i) greedily and then rule

(ii) greedily, the number of nodes decrease by a constant factor and hence after
at most O(logm) rounds we have computed T ′.

To construct the cluster partition in external memory we implement each
round by sorting the edges according to parent endpoints. This identifies all
children of all nodes. In particular, we can find all leaves and nodes with no
siblings. Subsequently, we can contract edges according to rules and update
weights accordingly. Hence, each round involves sorting and a constant number of
passes over the remaining edges. Since the number of remaining edges decrease by
a constant factor in each round the total number of I/O operations is dominated
by the number in the first round, which is O(ext-sort(m)).

It follows that we can solve regular expression matching usingO
(

nm√
MB

+ ext-sort(m)
)

I/O operations. Here in external memory, we did not use any tables. The only
space we use beyond the input itself is O(x + y2) = O(x) per subautomaton in
AS, and we have O(m/x) of these, so the total space is O(m). Thus we have
proved

Theorem 4. Let R be a regular expression of length m and let Q be a string
of length n. In external memory with block size B and internal memory size
M , B ≤ M ≤ m, the regular expression matching problem can be solved in
O(nm/(

√
MB) +m/B · logM/B(m/B)) I/O operations and O(m) space.

This completes the proof of Theorem 1. In the introduction, we ignored the
sorting term m/B · logM/B(m/B), because it is dominated by the nm/(

√
MB)

term when n ≥ m ≥M .

