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Tentative schedule

M

Chapter 13 in textbook

Tuesday, January 17 Unconstrained optimization
Lipschitz continuity
Majorization minimization
Convexity
Step size rules & stopping criteria
Power iteration

Wednesday, January 18 Constrained optimization
Convex sets
Proximal gradient method
Optimality conditions
Accelerated proximal gradient method
Smoothing techniques

January 17-18, 2021 lartin — DTU Compute Optimization Methods for Tomography 3
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Optimization for tomography

Maximum likelihood (ML) estimation

X = argmax {m(b|x)} = arg)r{nin {=Inm(b|Xx)}

Maximum a posteriori (MAP) estimation
X = argmax {w(b| x)m(x)}
X
=argmin{—In7(b|x) — Inm(x)}
X
Example

minimize }|\b — Ax|[3 +~ R(x) -+ const.

January 17-18, 2021 lartin ompute Optimization Methods for Tomography a
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Unconstrained optimization

minimize g(x)

e variable x € R”

® objective function g : R” — R continuously differentiable
e global minimum at x* if g(y) > g(x*) for all y € R"

e x is a stationary point of g if

99(x)
8X1

OXn

e stationarity is a necessary condition for global optimality

lanuary 17-18, 2021 lartin lersen — DTU Compute Optimization Methods for Tomography 5
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January 17-18, 2021

Stationary points

saddle point

X
local maximum 9(x)

local minimum

Martin S. Andersen — DTU Compute

local/global minimum
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Gradient method
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Iterative update of image

xH) — xK) _  vg(x®)), k=0,1,2,...

step size fx > 0

directional derivative of g at x() in the direction —Vg(x(*)) is

~Vg(x)Tvg(xM) = —||vg(x®)|3

directional derivative is negative unless x(¥) is a stationary point
implies that —Vg(x(%)) is a descent direction if x(¥) is not stationary
e descent it guaranteed if we choose tx such that g(x(*t1)) < g(x(¥)

January 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography
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Januan y 17-18, 2021

Exactline search

Cauchy’s step size rule: minimize g along the current search direction

fk = argmin {g(x(k) — th(X(k)))}
t>0

e “greedy” heuristic
* may be as expensive to solve as original problem

Martin Optimization Methods for Tomography 8
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Example: least-squares objective
1 2
9(x) = 5 Ib - Ax|3

e gradient Vg(x) = AT(Ax — b)
e exact line search

| Vo(xW)Z AT gW|2
t = xB — tvax®NnL = | 2 _ 2
= argmin {g( 90N} = LA~ TAAT I

which follows from o) = b — Ax(¥) and

d
9 —tvg(x)) = t] AVg(x")| — [Va(x")[E =0

January 17-18, 2021 Martin S. Andersen — DTU Compute
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Example: least-squares objective (cont.)

M

_
(=)
[e2]

——Exact LS
—— Exact LS, reduced step

Relative suboptimality

3
=
% 104
|g(x¥)) — g(x*)| g
|g(x*)| e
210
s
. H 8
Adjusted step size o 0
2 10%¢
kS
Y, =09 <
2 | I L
%% 50 100 150 200

Iterations

Optimization Methods for Tomography 10
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Example: gradient method with fixed step size (first 20 iterations)

M

1
g(x) = 5(25x5 + x3)

2
t = 0.020 t = 0.040 t=0.076 t=0.084

10 10 10

5 5 5
<0 <\ 0 =<' 0
5 5 5

-10 -10 -10

-5 5 -5 5 -5
X X X X1

Januan y 17-18, 2021 Martin S. Andersen — DTU Compute
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Lipschitz continuity

Gradient Vg is Lipschitz continuous if there exists a constant L such that

IVa(x) = Va(y)llz2 < L|x — yl2, forallx,y € R”

January 17-18, 2021

Quadratic upper bound

If Vg is Lipschitz continuous with constant L, then

L
9(y) < g(x) +Vg(x)"(y —x) + 5lly — x|I3, forallx,y € R"

Optimization Methods for Tomography 12
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Quadratic upper bound: derivation

¢ Define restriction of g to line through x and y: ¢(7) = g(x + 7(y — X))
¢ Newton—Leibniz integral rule: ¢(1) — ¢(0) = f01 ¢'(r)dr

1
ay) — g(x) = /0 Vo(x +7(y - x)T(y - x) dr
1

=Vg(x)"(y —x)+ /0 (Va(x +7(y — x)) — Vg(x))"(y — x) dr

]
< Vg(x) (y - x) +/0 IVa(x +7(y — x)) = Vg(x)|l2[ly — x|[2d7

1
<VgX)(y - X) + /0 rLlly - x|3 dr

lanuary 17-18, 2021 Martin S. Andersen — DTU Compute
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Example

Least-squares objective
1
g(x) = 5/1b - Ax|
with gradient Vg(x) = AT (Ax — b)

Implies that

IVa(y) = Va(x)llo = AT Ay — x)[2 < | AT All2]ly — x|z

and hence Vg is Lipschitz continuous with constant L = || A||3

Januan y 17-18, 2021

'sen — DTU Compute Optimization Methods for Tomography 14
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Twice continuously differentiable functions

Suppose g is twice continuously differentiable with Hessian matrix

[P9(x) Pgx) .. 9P9(X)]
ox? Ox10xp OX10Xn
Pg(x) Pgx) . 9Pg(x)
v2g(x) — OX20X4 8)(22 OXo0Xn
Rg(x) Pgx) . Pgx)
| OXnOX1  OXnOXp ox2 |

Bounded Hessian

Vg is Lipschitz continuous with constant L iff | V2g(x)||2 < L for all x

January 17-18, 2021 Martin Optimization Methods for Tomography 15
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Exercise 13.1: Step size rules for least-squares problems

Consider the gradient method applied to the least-squares objective function
g(x) = 3|1b— Ax[} ie.,

xKHD) — x(0) _ AT(AXK) —b), k=0,1,2...

where x(9) is an initial guess. For each of the following step size rules, show
that the gradient iteration can be implemented such that each iteration only
requires a single matrix-vector multiplication with A and one with A”.

© The step size t is constant, i.e., t, = t > 0 for all k.
@® The step size t, is found by means of the exact line search.

January 17-18, 2021 lartin ompute Optimization Methods for Tomography 16
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Exercise 13.1: Step size rules for least-squares problems (solution)
© Constant step size: tx =t

vo(xh)) = AT(AxK) — b) = —AT oK)
okt = b — A(xH) — tvg(x)) = oK) 1 tAV g(x(F)
IVg(x)]3 IAT g2

Exact line search: t, = —
12 k= Javg(x®)2 ~ TAVg(x®)|2

Vg(xt) = —AT ")
y = Avg(x)

k1) — (K) IVg(x™)|3

Q(
H.VHz

Januan y 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography 16
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Majorization
A function ¥ (y; x) is said to be a majorization of g at x if

Y(x;x)=g(x) and (y;x)>g(y), forally

Januan y 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography 17
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Majorization minimization

Iterative update based on majorization

x5 = argmin {w(y; X(k))} , k=0,1,2,...
y

o x(k+1) minimizes the majorization «(y; x(¥)) so
w(x(k+1); X(k)) < ¢(X(k), x(k))
e properties of majorization imply that

g(x(k‘H)) < ¢(X(k+1); X(k)) < w(x(k); x(k)) — g(x(k))

January 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography 18
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Majorization minimization: quadratic majorization
Use quadratic upper bound to construct majorization

U(yix) = 900 + Vg (y — x) + Sy — xI}3

with Vg Lipschitz continuous with constant L

Gradient method with constant step size

January 17-18, 2021

x40 = argmin {(y; x9) } = x® — 4,Vg(x®),  f =
y

Optimization Methods for Tomography 19
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Analysis of gradient method with constant step size

Majorization property g(x(t1)) < ¢ (x(k+1); x(K)) implies that

g(x D) < g(x¥) — | Va(x )3

e summing inequality for k =0,..., N,
1N
o D Iva(x )3 < g(x©@) — g(xN+1)) < g(x@) — g(x*)
k=0

e converges to stationary point if g(x(9)) — g(x*) is finite
e step size t, € (0,2/L) yields a descent unless Vg(x(%)) = 0

January 17-18, 2021

Martin S. Andersen — DTU Compute
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Exercise 13.2: Lipschitz continuous gradients

Suppose g;: R” — R and g>: R” — R are continuously differentiable.

Show that if Vg; and Vg, are Lipschitz continuous with constants L and Lo,
respectively, then Vg(x) = Vgi(x) + Vgo(x) is Lipschitz continuous with
constant L = Ly + Lo.

January 17-18, 2021

Optimization Methods for Tomography 21
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Exercise 13.2: Lipschitz continuous gradients (solution)

We have that V(g + g2) = Vg1 + Vg, and hence (triangle inequality)

IVa1(y) + Vga(y) — Va1 (x) — Vga(x)2 <
IVa1(y) — Vgi(x)ll2 + [[VG2(¥) — Vgo(X)2.

Thus, if Vgy is Li-Lipschitz and Vg. is Lo-Lipschitz, then

IVg1(¥) + Vg (¥) — Vagi(x) — Vga(X)|2 < (L1 + L2)[ly — x[|2

which shows that Vgy + Vg» is (L1 + Lp)-Lipschitz.

Januan y 17-18, 2021
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SIRT-like methods

Recall the SIRT method
xk+1) — x(K) _ \, DATM(Ax¥) — b)

where )\ € (0,2) and M and D are positive diagonal matrices
May be viewed as scaled gradient method for minimizing

9(x) = 5 (b— Ax)T M(b— Ax) = _ b~ Ax|f,

N =

with gradient Vg(x) = ATM (Ax — b)

Martin S. Andersen — DTU Compute
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SIRT-like methods (cont.)

Gradient satisfies

IVg(y) = Vg(x)lp = | D/2AT MAD'/2D~"2(y — x)| 2
< |M'2ADV2| 5| D3 (y — x)lI2

Assuming that D and M satisfy |M'/2AD'/2|, <1,

IVa(y) = Va(x)lp < ||y — xl[p-1

January 17-18, 2021 Martin S. Andersen — DTU Compute



=)
—_
=

M

January 17-18, 2021

SIRT-like methods (cont.)

Condition ||Vg(y) — Va(x)|lp < ||y — x||p-+ implies quadratic upper bound

9(y) < 900+ VgX) (v~ )+ 5y~ XD (¥~ x)

Majorization minimization method for minimizing g

xk+1) = x(F) _ \, DV g(x*))
= x®) — \«DATM(Ax — b)

with A, € (0,2)

Martin S. Andersen — DTU Compute
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SIRT-like methods (cont.)

|M'/2AD"/?||, < 1 is satisfied for D and M defined as

m n
D = |AlY, M= |APY, a<0,2]
i=1 j=1

we define |A;|° = 1 when A; =0

objective function g(x) = %Hb — Ax||2, depends on o
Cimmino’s method: a =0

SIRT: a = 1

“parallel” coordinate descent: o = 2

January 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography 25
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Exercise 13.3: SIRT-like methods

M

Recall that the SIRT iteration solves a weighted least-squares problem of the
form

minimize §||b — Ax|)%, M diag. positive definite.
© Show that |[M'/2AD"/2|, < 1 if M and D are diagonal matrices and
m n
DjjT1 = Z ’Aij’a7 IV’//_1 = Z ’Aijlz_aa (ORS [07 2]
i=1 =1
Hint: Show that |M'/2AD"/2x||3 < ||x||2 when a € [0, 2].

® Implement the SIRT iteration in MATLAB with « as an input parameter.
® Compute reconstructions for different « (see textbook for details).

January 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography 26
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Exercise 13.3: SIRT-like methods (solution, question 1)

M

2
HM1/2AD1/2XH3 Z (M1/ZZAI/D1/2 >
2
< ZMH (Z AUI&ID}”)
2
= ZMH (ZA,‘ “/ZA,Q/2|X,|D}/2)
n
(Cauchy-Schwarz) < ZM,-,- Z AP ) D 1A Dyx?
i=1 j=1 j=1
n n n m
=D | D IA°Dx7 | = > Dy (Z |Af/|a> xF = ||x|.
=1\ j=1 j=1 =1

Methods for Tomography 26
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Convexity

g : R" — R is convex if and only if

g(0x + (1 - 0)y) <bg(x) + (1 - 0)g(y), 0<[0,1]

for all x,y € R" (g is concave if —g is convex)

Januan y 17-18, 2021 Martin S. Andersen — DTU Compute
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Convexity: first-order condition

Continuously differentiable g is convex if and only if

a(y) > g(x)+ Va(x)"(y — x)

forall x,y ¢ R”

January 17-18, 2021 Martin S. Andersen — DTU Compute
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Convexity: implications

>
>
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January 17-18, 2021

e stationary points are global minimizers
9(y) = g(x") + Vg(x")T(y — x*) = g(x*), forally e R"
e gradient method with step size t, = v/L and v € (0, 2) satisfies

2L x©) — x*||3

g(x(k)) —g(X*) < 4+7(2 —’y)k :

if Vg is Lipschitz continuous with constant L
e suboptimality satisfies g(x(¥)) — g* = O(1/k)
e at most O(1/e) iterations required before g(x(¥)) — g* < ¢
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Strong convexity

g is strongly convex with parameter p > 0 if

a(ox + (1 - 0)y) < 0g(x) + (1 — 0)g(y) - "1 Wy

foralld € [0,1] and x,y € R"

Interpretation: §(x) = g(x) — 4||x||3 is convex

Januan y 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography 30
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Strong convexity: first-order condition
Continuously differentiable g: strongly convex with parameter p > 0 if

9(y) = 9(x) + Va0 (y - x) + Sy - x[3. x.y € R"

Implies that minimizer is unique

9(x) +Vg(x)"(y — x) + 4lly — x|3

X

January 17-18, 2021 lartin ompute Optimization Methods for Tomography 31
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Strong convexity: implications

® minimizing quadratic lower bound wrt. y yields
1 . 1
9(y) 2 9(x) = 5 IVgllz = g(x) - g(x*) < 5 IVg(x)2
e substitute x* for y in first-order condition
* T(y* AT 2
9(x*) = g(x) + Vg(x) " (x* — x) + S [x* — x|z
> g(x) = [Vg(x) o1 x* = x|z + 5 1x* - x]3

g(x*) < g(x) implies that

N 2
X" — x|z < ;||VQ(X)||2

January 17-18, 2021 Martin S. Andersen — DTU Compute
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Strong convexity: implications (cont.)

¢ gradient method with step size tx = 2/(L + 1) with satisfies

K L(L=m\* ) _ 2
o) - ) < 5 (1) 1x0 - xlE

and

X~ < (E2) x0 e,
“\L+pu
if g is p-strongly convex with L-Lipschitz gradient
e implies that x(¥) converges linearly to x*

January 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography 33
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Comparison of worst-case suboptimality bounds

102 T 3
2 S | k=1
© I 1 —p = 2=
E 10"} £ KT Lo
=4 B ]
I SN ]
a3 100p T
0} F §
= I ]
g 10711
o] - E
O i ]

10_2 | | |

0 50 100 150 200

January 17-18, 2021 lartin — DTU Compute Optimization Methods for Tomography 34
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Example: least-squares problem

1
9(x) = 5/1b— Ax|}3
Linearization of gradient around x* yields

Vg(x) = Vg(x*) + V2g(x*)(x) — x*)

xUH) — x(K) _ AT A(x () — x*),
Subtract x* from both sides, take norm, and use || Mx||2 < ||M||2]|X]|2
xKHD) _ xx = (1 - tAT A)(xF) — x*)
— (I — tAT A1 (x(©) _ x)

1XY) —x*|l2 < |1 — tAT AJ[5]|x(? —x*||

'sen — DTU Compute Optimization Methods for Tomography 35
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Example: least-squares problem (cont.)
Suppose eigenvalues of AT A belong to the interval [i1, L] where L = || A||3
Choose t such that it minimizes the spectral radius of / — tAT A
t* = argmin{||l — tAT A||3}
t
= i 1 — A
arg?ﬁm{krgaﬁ] | I}

= argmin{max{1 — fu,1 —tL tp—1,IL —1}}
t

Spectral radius of I — t*AT Ais (L — ) /(L + 1)

January 17-18, 2021

'sen — DTU Compute Optimization Methods for Tomography 36
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Exercises13.4and 13.5

M

13.4 Strong convexity. Suppose g is a twice continuously differentiable and
strongly convex function with strong convexity parameter ..

@ Show that the smallest eigenvalue of V?g(x) is bounded below by .
@® Consider the regularized least-squares objective function

1 )
9(x0) = 5lb— Ax|}+5Ix|3.  5>0.

Derive the Lipschitz constant for Vg and a lower bound on .
13.5 Poisson measurements. The negative log-likelihood function is

g(x) = 17 exp(—Ax) + exp(—b) T Ax + const.

where b = —log(l/lp) and I is assumed to be positive.
(Refer to textbook for questions.)

January 17-18, 2021 Martin en — DTU Compute Optimization Methods for Tomography 37



)
e
=

M

January 17-18, 2021

Exercise 13.4: Strong convexity (solution)

Suppose g is a twice continuously differentiable and strongly convex function
with strong convexity parameter .

@ Show that the smallest eigenvalue of V2g(x) is bounded below by .

g(x) = g(x) - SIx|3, V25(x) = V2g(x) — ul = VAV — ul

® Consider the regularized least-squares objective function

1 5
9(x) = EHb—AXH%JFEHXHS, 0>0.

Derive the Lipschitz constant for Vg and a lower bound on p.

V2g(x)=ATA+ 0l — L=||A|5+6, n>6

'sen — DTU Compute Optimization Methods for Tomography 37
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Exercise 13.5: Poisson measurement model (solution)
@ Show that g(x) is a convex function of x.

Vg(x) = AT (exp(—b) — exp(—Ax)), VZg(x) = AT diag(exp(—Ax))A
yT AT diag(exp(—Ax))Ay = | diag(exp(—Ax))'/2Ay|5 > 0, Vy

® Derive the first-order optimality condition associated with
Xl = argmin {g(X)}
® Show that the gradient of g(x) is Lipschitz continuous on R’

|AT diag(exp(—Ax))Al2 < || AllZ max(exp(—r] X))

O Show that if Ax = b is consistent, then x satisfies the first-order
optimality condition Vg(x) = 0 if Ax = b.

January 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography 37
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Power iteration for matrix norm estimation

M

} = Amax(H) H symmetric

Power iteration

x) = Hx®) /|[Hx®) |5, k=0,1,2,..., with x(%) random
A = | Hx®)||5 225 Xk (H) as k — oo
Why it works: let H= VAVT and a = V7 x(©
x®) = HkxO©) /| HE x O, k=1,2,...

n
Hkx(O): VAvax(o):Zai)\f(Vi’ k:1,2,

i=1

January 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography
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Power iteration for matrix norm estimation

M

x T Hx
xTx

Power iteration

x®D = Hx®) /||[Hx® ||,  k=0,1,2,..., with x(?) random

[Hll2 = sup { } = Amax(H) H symmetric
X#0

AR = | Hx®) ||, 225 X o (H) as Kk — oo

Why it works: let H= VAVT and o = V7 x(©
x) = HEXO) /| HR X O) |, k=1,2,...

P A\ K
)\1—ka)((0):041%—|—042 <2> V2+"-+Oén<n> v,

January 17-18, 2021 lartin ompute Optimization Methods for Tomography 38
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Example: H=ATA

100

—e—randn ()
10-1 -+- rand()
102

103

(IHl2 = 3¥0)/||H]|2

104

10-5 | | | | |
0 1 2 3 4 5

»
>

Remarks: (i) avoid forming H, (ii) similar to MATLAB’S normest ()

January 17-18, 2021 lartin S. — DTU Compute Optimization Methods for Tomography 39
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Backtracking line search
Armijo condition for gradient method

\
N
A\
N

g(xf) — tvg(x9)) < g(x)) — at||Vg(x)||3

2

Januan y 17-18, 2021 lartin ompute Optimization Methods for Tomography 40
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Backtracking line search (cont.)

Backtracking line search

Require: o € (0,3), € (0,1),and t =5 >0
while g(x(¥) — tvg(x®))) > g(x) — at|Vg(x1)|Z do
t« t3
end while

® « controls a trade-off between max. step length and required decrease
e 3 controls backtracking “aggresiveness”
e typical values are a = 1072 and 5 = 0.7

January 17-18, 2021
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Barzilai-Borwein step size rules
Quadratic approximation

9(y) ~ 9(x) + Vg (v - x) + S lly - x|3

Vg(y) — Va(x) = ay — x)

Define Ay = Vg(x9)) — Vg(x*=1)) and As = xF) — x(k=1) (k > 1)

AsTA
tEE” = a;1, Qg = argmin {HAy — aAsH%} _ oS 2y
o |As]|3

AsT Ay

152 = argmin { | 3ay — As|3} =
8 1Ayl

January 17-18, 2021 lartin S. 'sen — DTU Compute Optimization Methods for Tomography a2
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Barzilai-Borwein step size rules (cont.)

first step size (k = 0) must be chosen using another method
not a descent method (g(x(**1) < g(x(¥)) not guaranteed)

e convergence guaranteed if g is strongly convex and quadratic
safe-guarding is generally required to ensure convergence

January 17-18, 2021 lartin — DTU Compute Optimization Methods for Tomography a3
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= Example: least-squares problem
BB1 _ [Vg(xk=1)|2 {582 _ |AVg(x*—1)| 2
AV g(x(k=1)]||5 |ATAVg(xk=1))|2
BB1 BB2 Exact line search Backtracking
10 10 10 10
5 5 5 5
<0 <0 <0 <\ 0
5 5 5 5
10 10 -10 10
5 0 5 5 0 5 5 0 5 5 0 5

Optimization Methods for Tomography 44
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Stopping criteria
Approximate stationarity conditions
IVox® )z < e 128D — x|l < e x)
—tVg(x(k)

not scale invariant; change of variables g(y) = g(Cy) yields

IVa(y )2 = |ICTVa(xW)llo < e, VG(y) = CTVg(Cy)

Strongly convex objective

IVg(x)|p < m, IVg(x® ||, < %’

imply that g(x(¥)) — g(x*) < eopj and [|xK) — x*|[2 < eqiet

January 17-18, 2021
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Example: Tikhonov regularized least-squares

minimize g(x) = ||b — Ax|2 + | x|3
a > 0 is a lower bound on strong convexity parameter (Exercise 13.4)
Stopping criteria

Vg2 = [l X — AT g p < 02, g0 — b Axth

ensures that || x9) — x*||5 < egist

January 17-18, 2021

— DTU Compute Optimization Methods for Tomography a6
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Exercise 13.6: Step sizes
Apply the gradient method to the problem of minimizing

1
9(x) = 5Ib— Ax|}

where A and b are generated as follows:
>> I0 = 1e6; n = 128;

>> A = paralleltomo(n)*(2/n);

>> x = reshape(phantomgallery(’grains’,n),[],1);
>> I = poissrnd(IO*exp(-A*x));

>> b = -1log(I/I0);

Plot (semi-log. y-axis) the obj. value for the first 200 iterations using:
@ Exact line search
® Backiracking line search
©® BB1 step size
@ BB2 step size

January 17-18, 2021 Martin lersen — DTU Compute Optimization Methods for Tomography a7
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Constrained optimization
minimize g(x) + h(x)

e g:R"” — R convex and differentiable
e h:R" - RU{—00, 00} closed convex
® h not necessarily continuously differentiable but “simple”

Special case
minimize  g(x)
subjectto x € C,

0, xecC

corresponds to h(x) = Ic(x) = { X C
Oo?

January 17-18, 2021 lartin ompute Optimization Methods for Tomography a8
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M

C C R"is a convex set if and only if

Ox+(1—-0)yecC, 6€c]0,1], forallx,yeC

convex set nonconvex set
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Majorization minimization

Suppose Vg is Lipschitz continuous with constant L
® majorization of g + hat x

0(y:%) = 90x) + Vg(x0) (¥ —x) + 51y~ X3+ h(y)

® majorization minimization
X4 — argmin { Tg(x)Ty + h(y) + 5l - X3}
y

_ L
 argmin { (9 + 5y~ (x — (1) g(x )|

January 17-18, 2021 Martin S. Andersen — DTU Compute
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Proximal gradient method

Proximal operator associated with hand t > 0

) 1
prox(x) = argmin { h(y) + 5. Iy~ xI3
y

e casy to evaluate if his “simple”
e strong convexity implies that prox;,(x) is unique

Proximal gradient method

January 17-18, 2021 Martin lersen — DTU Compute Optimization Methods for Tomography 51
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Examples

® h(x) = Ic(x) where C is a closed, convex set
proxi(X) = Pe(X) = argmin{||y — x|/3}
yec
e hix)=le(x)withC={x|<x;<u;, i=1,...,n}
proxsy(X) = max(I, min(u, x))
* h(x) = | x|

proxs(X) = diag(sgn(x)) max(abs(x) — {1, 0)

Januan y 17-18, 2021 lartin ompute Optimization Methods for Tomography 52
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Optimality condition

x* is a minimizer of g + hif and only if

X* = proxs(X* — tVg(x*)), t>0

Special case: h(x) = Ic(x) where C is closed, convex

@ @ @
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Example: nonnegativity constraints

minimize  g(x)
subjectto x €C

withC ={x|x; >0,i=1,...,n}
Optimality condition
Xx* = max(0,x* — tVg(x*)), t>0

or equivalently, fori=1,....n

(=0 A [Vg(x")];=20) v (x>0 A [Vg(x7)]; =0)

Januan y 17-18, 2021

'sen — DTU Compute
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Example: reconstruction with nonnegativity constraints

PG: 200 iterations

Reconstruction (x)

“Optimality”

05 0015

[em]
[em]

0.005
2 Bl 0 1 2
[em] fem]

Model sinogram (Ax) Residual (b-Ax)

Position [cm]

Position [cm]

450 -100

-50 0 50 100 150 -150 -100 -50 0 50 100
Projection angle [deg.] Projection angle [deg.]

150
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Example: reconstruction with nonnegativity constraints

PG: 500 iterations

Reconstruction (x)

“Optimality”

[cm] : [cm]

Model sinogram (Ax) Residual (b-Ax)

Position [cm]
Position [cm]

450 -100

100

-50 0 50 -50 0 50
Projection angle [deg.] Projection angle [deg.]
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= Example: reconstruction with nonnegativity constraints

10*

o 10°F

(_E

2

%
10°
10’ 0 160 2(;0 360 460 500

Number of iterations
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Accelerated proximal gradient method

Accelerated proximal gradient method

Require: initial vector x(©), y = x(0) t, = 1
fork=0,1,2,...do
xFD = prox 4 yn(y — (1/L)V9(y))
14 /1+482
— 5

k1 =
y = x(et1) B (k1) _ (k)

—
tk11
end for

e improved worst-case bound: f(x(*)) — f(x*) = O(1/k?) where f = g+ h
* not a descent method
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Example

minimize g(x) + h(x)

where

1
9(x) = 5Ib— Ax|}

h(x) = Z[1x]l2 + le(x)

Relative objective suboptimality
S
n

C={x|x;>0,i=1,...,n}

(several ways to “split” objective) 10

Januan y 17-18, 2021 Martin en — DTU Compute
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Regularized least-squares

minimize  }||b — Ax||32 + v R(x)
subjectto xeC

e special cases: Tikhonov, generalized Tikhonov, and TV regularization

trade-off between two objectives
often of interest to solve problem with different values of
trade-off curve (aka L-curve), parameterized by ~

(5l - Ax ()3 AL ) )
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Tracing the trade-off curve: Tikhonov regularization

10000

107!
®
8000
?
100
22 6000 | \
= ®
= \
" \
I 40000 9
\
®
\\
2000 L
<610
0 . . \s.\‘“o‘~o-.a_a102
0 1 2 3 4 5
3lb — Ax* ()3 %104

Warm-start: use x*(y) as initial guess when solving for x*(+')

January 17-18, 2021 Martin S. Andersen — DTU Compute

Iterations

160

—— Warm-start
—e—No warm-start

107

10°
N

10° 102
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Total variation regularized least-squares

In ® D,
T _|'N M
TVa(x) = D = Z|d x. D= |pe

e TVa(x) is convex but not everywhere differentiable
® TV,(x) is not “simple” (proximal operator is not cheap to eval.)
® smooth approximation

2n
TV (x Z ¢s(d7x),  VTIVa(x) = dig5(d x)

i=1

e more advanced methods exist (splitting methods, etc.)
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Smooth approximation to absolute value function

- e

2
2
2 <
* Huber penalty (scaled): ¢5(7) = {|26|’ ) T: ;g
Tl — 15, |T

e Lifting: ¢s(7) = ‘

e Softmax: ¢s5(7) = dlog(e™/® + e~ /%)

os(t) 72, estr)y e Lifting
1 —— Huber penalty
- - - Softmax
N 7 — 1
‘ T et "‘é
-0 0
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Example: gradient of TV (x)

>> N = 256; Huber Softma
= phantomgallery(’grains’,N) ... B s T

+ le-2*randn(N,N);

N4

v

>
|

0.01
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Extensiontoisotropic TV

5(x [ (v ® Du)
TV ( qu(; (Dx), D = [i,'T(DN © )

#s: R? — R approximates 2-norm of vector in R?

Approximation 95(¥) Vos(y)
Lifting | m 2 [ { J (%
vy Iyllz < 6
Huber 26 - — Ay
{||y||2 ~ 3. yll2> 6 Clvle)

tanh(]|yll2/3)
Softmax Slog(ellvllz/d 4 g=1I¥ll2/5) { .Y, Y#0

0, y=0

January 17-18, 2021 Martin lersen — DTU Compute
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Exercise 13.7: Smooth approximation of total variation penalty

Show that the three smooth approximations of the absolute value function all
have a Lipschitz continuous derivative with Lipschitz constant L = 1/5.

e Lifting: ¢s(7 H[ } VT2 62

72

55 <46
e Huber penalty (scaled): ¢5(7) = {‘25’7 ) T: ; ’
T — 55 T

e Softmax: ¢s(7) = 6 log(e™/? + e~ 7/9)
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= Exercise 13.7: Smooth approximation of total variation penalty
e Lifting: ¢s(7 H[ } VT2 + 02
" - ¢’6(7_) - TQZ%S(T) . &2
@(r) = ¢5(T)’ ?(7) = P5(7)?  ps(7)8

72

=, Tl <é
* Huber penalty (scaled): ¢s(7) = {|275| s T: s
)

o) = {5’ TS0 e = {”5 Irl <1

sgn(7), |7| >4 0, || > 1
e Softmax: ¢s(7) = dlog(e™/? + e~ /%)

G4(r) = tanh(r/8),  $l(r) = —

& cosh?(7 /)
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Exercise 13.8: Regularized weighted least-squares problems

Consider the following weighted least-squares problems with two different
regularization terms: (i) generalized Tikhonov regularization

, 1
Xari = argmin & 2 [|b — Ax|[3, + | Dx|3 (1)
x 2 2
and (ii) total variation regularization
. 1
X7y _argmln{ZHb—AxH%,,JrfyHDx]h}. (2)
X

The variable x € R” represents an image of size N x N (i.e., n = N?).
(Refer to textbook for questions.)
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Exercise 13.8 (solutions)

Use power iteration to estimate a Lipschitz constant for the gradient of g(x)
in the generalized Tikhonov problem. Plot the estimated Lipschitz constant
for different values of .

Apply the power iteration method to the Hessian of g(x) which is given by
Vv2g(x) = ATWA+~D'D.

Avoid forming the Hessian, e.g., by evaluating the matrix-vector product as
H(x) where

H = 0(x) A’*(w.x(Axx)) + gamma*(D’*(D*x));

The vector w contains the diagonal elements of W.

Januan y 17-18, 2021
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