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Introduction

To represent the scanned object and the projection data in the computer,

both must be discretized.

Object: the physical reality is typically continuous, the way of

discretization can be chosen freely.

Projection data: the measurements are already discrete (�nite set of

detector elements, �nite set of angles).

Forward transform: the Radon transform must be discretized,

de�ning how line integrals are computed or approximated on discrete

images.
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Image Coordinate Systems

x1

x2

(x1, x2)



1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4


i

j

Left: Euclidean systems. Right: array �coordinates� or indices.
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A Pixel as a Constant Function

A pixel is a rectangular domain

π =
{
(x1, x2) ∈ R2 : x left1 ≤ x1 < x right1 and xbottom2 ≤ x2 < x top2

}
.

The pixel indicator function is de�ned by

χπ(x1, x2) =

{
1 if (x1, x2) ∈ π ,

0 otherwise.
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Discrete Images

A discrete image I⊞ is a pair (Π, f ) where Π = {π1, . . . , πn} is a regular

pixel grid of n pixels, and the vector

f =

f1
...

fn

 ∈ Rn

holds the pixel values of the image.

The discrete image I⊞ induces an associated pixelated image function:

f⊞(x1, x2) =
n∑

j=1

fj χπj (x1, x2) .

This is a piecewise constant function which is constant in each pixel.
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Example of a Pixelated Image Function
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Intersection of Line and Pixel

Recall our de�nition of the line

Lθ,s = {(x1, x2) ∈ R2 : x1 cos θ + x2 sin θ = s} .

For any pixel π and line Lθ,s , the intersection Lθ,s ∩ π is a (possibly empty)

line segment, which we call the intersection segment of Lθ,s and π.

The intersection length L
(π)
θ,s (for line Lθ,s and pixel π) is the length of

this segment. If Lθ,s ∩ π = ∅ (the line does not intersect the pixel) then

we de�ne L
(π)
θ,s = 0.

The Radon transform R[χπ](θ, s) of the indicator function for the pixel π,
evaluated at (θ, s), is the line integral within π along Lθ,s .

Since the indicator function is a constant function 1 within this pixel, the

line integral is equal to the length of the line segment in the pixel:

R[χπ](θ, s) = L
(π)
θ,s .
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Projection Models Covered Here

Line model Strip model Interpolation model

The interpolation model is also commonly known as the Joseph model.
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The Line Model � Geometry

Detector element

Lθ,s

L
(πj )
θ,s
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The Line Model � Details

Given the pixelized image function f⊞, its Radon transform can (due to its

linearity) be expressed as

R{f⊞}(θ, s) =
n∑

j=1

fj R[χπj ](θ, s) =
n∑

j=1

L
(πj )
θ,s fj .

By computing the sum over the pixel intensities fj in all pixels of I⊞,

weighted by their intersection lengths L
(πj )
θ,s , we obtain the value of the

Radon transform of f⊞, sampled at (θ, s) in the sinogram.

This process is often referred to as �Siddon's method� (although Siddon's

contribution was a clever way to arrange the computations for a 3D grid).
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The Strip Model � Geometry

Detector element

πj
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The Strip Model � Details

Each detector element measures the integral of the sinogram g(θ,s) for all
lines Lθk ,s that intersect with it.

For parallel-beam CT, the lines that intersect the ℓth element form a strip

de�ned by the set of parallel lines {Lθk ,s : s leftℓ ≤ s ≤ srightℓ }. Given f⊞ the

data recorded in the ℓth pixel at angle θk is therefore given by the integral∫ srightℓ

s=s leftℓ

g(θk , s) ds =

∫ srightℓ

s=lnleftℓ

R[f⊞](θk , s) ds

=
n∑

j=1

fj

∫ srightℓ

s=s leftℓ

R[χπj ](θk , s) ds =
n∑

j=1

∫ srightℓ

s=s leftℓ

L
(πj )
θk ,s

ds fj .

Hence, the contribution from pixel πj at angle θk equals fj times the

area of intersection
∫ srightℓ

s=s leftℓ

L
(πj )
θk ,s

fj ds between pixel πj and the strip, which

is 0 if the strip does not overlap with the pixel.

The total contribution to the detector element is the sum over all pixels.
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The Interpolation Model (or Joseph Model) � Geometry

Detector element

Lθ,sj

• ••
γjγj ′

π̂
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The Interpolation (or Joseph) Model � The Basic Idea

Key idea: put an arti�cial pixel π̂ over the line Lθ,sj , in such a way that we

can use the line model within this arti�cial pixel.

The intensity value associated with the arti�cial pixel is found by linear

interpolation between the pixel values fj and fj ′ in two neighbour pixels πj
and πj ′ , either in the same row or column � depending on θ.

See the details next slide.

(The Joseph model was originally presented without these details.)
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The Interpolation (or Joseph) Model � The Groovy Details

Assume θ ∈ [−45◦, 45◦]. The intersection length associated with π̂ is

Lπ̂θ,sj = γ/ cos θ, where γ is the width of the pixels.

Let γj and γj ′ denote the lengths between the pixel centers and the center

of the arti�cial pixel (obviously, γj + γj ′ = γ).
Using linear interpolation the pixel value of the arti�cial pixel is then

f interp =
γj ′

γ
fj +

γj
γ
fj ′ .

The contributions from the tow neighbour-pixels to the line integral are

then obtained by multiplication with the intersection lengths:

γj ′

| cos θ|
fj and

γj
| cos θ|

fj ′ =
γ − γj ′

| cos θ|
fj ′ .

To compute γj and γj ′ we need the horizontal coordinate of the arti�cial

pixel's center, which is equal to the coordinate for the adjacent row shifted

by a constant amount ς. By Pythagoras we have
(
Lπ̂θ,sj )

2 = γ2 + ς2, hence

ς = Lπ̂θ,sj sin θ = γ tan θ .
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The System Matrix

All projection models take the form

measured data for θk and sℓ is given by

n∑
j=1

a
(j)
kℓ fj .

Di�erent discretization schemes leading to di�erent expressions for a
(j)
kℓ .

The measurements b ∈ Rm (stacking the elements in the sinogram) and

the vector f of pixel values are related by a system of linear equations:

b = A f A ∈ Rm×n .

The elements of the system matrix A are given by

aij = a
(j)
kℓ with i = (k−1)Ns + ℓ ,

where j , k and ℓ are associated with pixel πj , projection angle θk and

detector coordinate sℓ, respectively.

The number of rows in A equals the number m = Nθ Ns of lines in all

views; the number n of columns equals the number n of image pixels.
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Storage Issues

For a 100×100 image, using 100 views and 100 detector pixels, we have a

matrix of 108 elements. This is challenging.

But there are few nonzero elements in the ith row of A. For an N×N
image, each line intersects with at most 2N pixels, meaning that there are

at most 2N nonzero elements in each row.

We say that the system matrix is sparse, meaning that most of its elements

are zero. This is conveniently used to reduce the memory requirement.

Even storing A in a sparse format can be problematic. If we collect 1000

views of 1000× 1000 detector pixels then for a 3D grid with N × N × N
voxels and N = 1000 we have m = 10003 = 109 and there is at most

3N = 3000 nonzeros per row, so the number of non-zeros in the system

matrix is of the order mN = 1012.

The only alternative is to avoid storing the system matrix and instead utilize

the projection models for computing the matrix multiplications �on the �y.�
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The Columns and Rows of the System Matrix

Recall A maps the discretized absorption coe�cients in the pixels (the vec-

tor f ) to the data in the detector elements (the elements of the vector b):

b =


b1
b2
...

bm

 = A f = f1 c1 + f2 c2 + · · ·+ fn cn︸ ︷︷ ︸
linear combination of columns

. (1)

If the image consists of zeros except for a single pixel πj with pixel value 1,

then the corresponding vector f is all zeros except for a single element

fj = 1 in position j . The corresponding right-hand side is

b = 0 c1 + · · · 0 c j−1 + 1 c j + 0 c j+1 · · ·+ 0 cn = c j , j = 1, 2, . . . , n .

Hence c j , when reshaped, is the sinogram for a single pixel.
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The Rows of the System Matrix

Now consider the ith row of A which maps the pixel values in f to the ith
detector element:

bi = r
T
i f =

n∑
j=1

aij fj , i = 1, 2, . . . ,m . (2)

For the line model, this inner product approximates the line integral in the

Radon transform, and the nonzeros of r i correspond to those image pixels

that are intersected by the corresponding ray.

Hence, if we reshape r i and plot it as a 2D image then we get a picture of

the ray's path through the object.
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Fooled by Discretization � One-Projection Reconstruction

For some combinations of a single projection angle θ, detector size, and
number of detector elements, the system matrix A is square and

nonsingular. Hence, it appears that we can compute the reconstruction

x = A
−1

b from a single projection.

Ex: N = 16,θ = 7◦, N2 detector elements, detector size = image size.

Above is f⊞ and the detector data in the single projection. The resulting

system matrix A has full rank and we can thus reconstruct the image from

a single projection. This may seem sensational, but f⊞ is a very poor

representation of an actual grainy object.
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