Singular Values \& Functions

Per Christian Hansen

DTU Compute

Department of Applied Mathematics and Computer Science Technical University of Denmark

Some Notation

Vectors

$\begin{array}{rlc}\text { Norm (2-norm) } & \|\boldsymbol{x}\|_{2}^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2} & \|f\|_{2}^{2}=\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x \\ & =\boldsymbol{x} \cdot \boldsymbol{x}=\boldsymbol{x}^{T} \overline{\boldsymbol{x}} & =\langle f, f\rangle\end{array}$

Inner prod.

$$
\boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i=1}^{n} x_{i} \bar{y}_{i}=\boldsymbol{x}^{T} \overline{\boldsymbol{y}} \quad\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} \mathrm{d} x
$$

Weighted ditto

Orthonormal

$$
\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=\boldsymbol{v}_{i}^{T} \mathbf{v}_{j}=\delta_{i j} \quad\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}
$$

All vectors are column vectors, the superscript " T " denotes transposition, and a bar denotes complex conjugation.

Reminder: Fourier Series of Periodic Functions

The Fourier series of a 2π-periodic function f is

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n}[f] e^{i n x}, \quad i=\sqrt{-1}
$$

with the Fourier coefficients

$$
c_{n}[f]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} n x} \mathrm{~d} x=\left\langle f, \psi_{n}\right\rangle, \quad \psi_{n}=\frac{1}{2 \pi} \mathrm{e}^{\mathrm{i} n x} .
$$

The functions ψ_{n} form an orthogonal basis for $L^{2}(-\pi, \pi)$, and they are a very convenient basis for analysing the behavior of periodic functions.

Wanted: More Insight

We have studied an efficient algorithm - filtered back projection (FBP) for computing the CT reconstruction.

And we have also seen that the reconstruction is somewhat sensitive to noise in the data.

- How can we further study this sensitivity to noise?
- How can we possibly reduce the influence of the noise?
- What consequence does that have for the reconstruction?

We need a mathematical tool that lets us perform a detailed study of these aspects: the singular value decomposition/expansion.

But before going into these details, we will start with a simple example from signal processing, to explain the basic idea.

Motivation: Signal Restoration

Input
 System

Output

Assume that we know the characteristics of the system, and that we have measured the noisy output signal $g(t)$. Now we want to reconstruct the input signal $f(t)$.

The mathematical (forward) model, assuming 2π-periodic signals:
$g(x)=\mathcal{K}[f](x)=\int_{-\pi}^{\pi} h(y-x) f(y) \mathrm{d} y \quad$ or $\quad g=h * f$ (convolution).
Here, the function $h(t)$ (called the "impulse response") defines the system.

Deconvolution: reconstruct input f from output $g=h * f$

Convolution and Deconvolution in Fourier Domain

Due to the linearity, we have

$$
g=h * f=h *\left(\sum_{n=-\infty}^{\infty} c_{n}[f] \psi_{n}\right)=\sum_{n=-\infty}^{\infty} c_{n}[f]\left(h * \psi_{n}\right) .
$$

Hence, all we need to know is the system's response $h * \psi_{n}$ to each basis function $\psi_{n}=e^{i n t}$.
For the periodic systems we consider here, the convolution of h with ψ_{n} produces a scaled version of ψ_{n} :

$$
h * \psi_{n}=\mu_{n} \psi_{n}, \quad \text { for all } n,
$$

where $\mu_{n}=\left\langle h, \psi_{n}\right\rangle=c_{n}[h]$ (no proof). Hence, with $c_{n}[g]=\left\langle g, \psi_{n}\right\rangle$:

$$
g=\sum_{n=-\infty}^{\infty} c_{n}[g] \psi_{n}=\sum_{n=-\infty}^{\infty} c_{n}[f] c_{n}[h] \psi_{n}=\Leftrightarrow f=\sum_{n=-\infty}^{\infty} \frac{c_{n}[g]}{c_{n}[h]} \psi_{n} .
$$

Deconvolution is transformed to a simple algebraic operation: division.

Straightforward Reconstruction from Noisy Data

\triangleright Top left: one period of input $f(x)$ and noisy output $g(x)$ (noise invisible).
\triangleright Bottom left: corresponding Fourier coefficient; note the "noise floor."
\triangleright Top right: the reconstructed Fourier coefficients $c_{n}[g] / \mu_{n}$ are dominated by the noise for $n>100$; a straightforward reconstruction is useless.
\triangleright Bottom right: the straightforward and useless reconstruction.

Filtered/Truncated Reconstruction from Noisy Data

\triangleright Left: same as previous slide.
\triangleright Top right: let us keep the first ± 100 coefficients only.
\triangleright Bottom right: comparison of $f(t)$ and the truncated reconstruction using ± 100 terms in the Fourier expansion. It captures the general shape of $f(t)$.

What We Have Learned So Far

- With the right choice of basis functions, we can turn a complicated problem into a simper one.
- Here: the basis functions are the complex exponentials; deconvolution \rightarrow division in Fourier domain.
- Inspection of the expansion coefficients reveals how and when the noise enters in the reconstruction.
- Here: the noise dominates the output's Fourier coefficients for higher frequencies, while the low-frequency coefficients are ok.
- We can avoid most of the noise (but not all) by means of filtering, at the cost of loosing some details.
- Here: we simply truncate the Fourier expansion for the reconstruction.

Let us apply the same idea to parallel-beam CT reconstruction!

The Radon Transform

- The Radon transform $g=\mathcal{R} f$ Sometimes g is called $p_{\theta}(s)$.
- The image: $f\left(x_{1}, x_{2}\right)$ with $\left(x_{1}, x_{2}\right) \in \mathbb{D}$, the disk with radius 1 .
- The sinogram (the data): $g(\theta, s)$ with $s \in[-1,1]$ and $\theta \in[0,2 \pi]$.

Singular Values and Singular Functions

There exist unique scalars $\sigma_{n, k}$ and orthonormal functions $u_{n, k}(\theta, s)$ and $v_{n, k}\left(x_{1}, x_{2}\right)$ such that

$$
\mathcal{R} v_{n, k}=\sigma_{n, k} u_{n, k}, \quad n=0,1,2,3, \ldots \quad k=0,1,2, \ldots, n .
$$

The scalars are called the singular values:

$$
\sigma_{n, k}=2 \sqrt{\pi /(n+1)} \quad \text { with multiplicity } n+1
$$

If $\sigma_{n, k}=\sigma_{j}$ with $j=\frac{1}{2} n(n+1)+k+1$, then $\sigma_{j} \propto j^{-1 / 4}$ for large j.
(The word "singular" is used in the sense "special" or "unique.")

The Left Singular Functions

The left singular functions are given by

$$
u_{n, k}(\theta, s)= \begin{cases}\frac{1}{\pi} \sqrt{1-s^{2}} U_{n}(s) \cos ((n-2 k) \theta), & n-2 k \geq 0 \\ \frac{1}{\pi} \sqrt{1-s^{2}} U_{n}(s) \sin ((n-2 k) \theta), & n-2 k<0\end{cases}
$$

in which U_{n} are the Chebyshev polynomials of the second kind.
Note the convenient fact that the variables θ and s separate.

Some Left Singular Functions for $n=0,1,2,3,4$

The Right Singular Functions

It is convenient to introduce polar coordinates (r, ϕ) such that $x_{1}=r \cos \phi$ and $x_{2}=r \sin \phi$. Then the right singular functions are given by

$$
\begin{equation*}
v_{n, k}\left(x_{1}, x_{2}\right)=\tilde{v}_{n, k}(r, \phi)=\sqrt{\frac{n+1}{\pi}} Z_{n, k}(r, \phi) \tag{1}
\end{equation*}
$$

where $Z_{n, k}$ are the (real) Zernike polynomials:

$$
Z_{n, k}(r, \phi)=\left\{\begin{array}{ll}
R_{n}^{n-2 k}(r) \cos ((n-2 k) \phi), & 2 k \leq n \tag{2}\\
R_{n}^{2 k-n}(r) \sin ((n-2 k) \phi), & 2 k>n
\end{array} \quad k=0, \ldots, n\right.
$$

in which

$$
\begin{equation*}
R_{n}^{n-2 k}(r)=(-1)^{k} r^{n-2 k} P_{k}^{(n-2 k, 0)}\left(1-2 r^{2}\right) \tag{3}
\end{equation*}
$$

and where $P_{k}^{(n-2 k, 0)}$ are the Jacobi polynomials.
Note the nice feature: in the form $\tilde{v}_{n, k}(r, \phi)$ the variables r and ϕ separate.

Some Right Singular Functions for $n=0,1,2,3,4$

Singular Functions and Expansions

The functions $u_{n, k}$ are an orthonormal basis for $[-1,1] \times[0,2 \pi]$.
The functions $v_{n, k}$ are an orthonormal basis for the unit disk \mathbb{D}.
The expansions of f and g take the form

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=\sum_{n, k}\left\langle f, v_{n, k}\right\rangle v_{n, k}\left(x_{1}, x_{2}\right), \quad g(\theta, s)=\sum_{n, k}\left\langle g, u_{n, k}\right\rangle_{w} u_{n, k}(\theta, s) . \\
&\left\langle f, v_{n, k}\right\rangle=\int_{0}^{2 \pi} \int_{0}^{1} \tilde{v}_{n, k}(r, \phi) f(r, \phi) r \mathrm{~d} r \mathrm{~d} \phi \\
&\left\langle g, u_{n, k}\right\rangle_{w}=\int_{-1}^{1} \int_{0}^{2 \pi} u_{n, k}(\theta, s) g(\theta, s) w(s) \mathrm{d} \theta \mathrm{~d} s
\end{aligned}
$$

where

$$
w(s)=\frac{1}{\sqrt{1-s^{2}}}
$$

What We Learned

- All singular values $\sigma_{n, k}$ decay, by definition.
- Singular functions $u_{n, k}$ and $v_{n, k}$ with higher index n have higher frequencies.
- The higher the frequency, the more the damping in $\mathcal{R} v_{n, k}=\sigma_{n, k} u_{n, k}$.
- Hence the Radon transform

$$
\begin{aligned}
g & =\sum_{n, k}\left\langle g, u_{n, k}\right\rangle_{w} u_{n, k}=\mathcal{R} f=\mathcal{R} \sum_{n, k}\left\langle f, v_{n, k}\right\rangle v_{n, k} \\
& =\sum_{n, k}\left\langle f, v_{n, k}\right\rangle \mathcal{R} v_{n, k}=\sum_{n, k}\left\langle f, v_{n, k}\right\rangle \sigma_{n, k} u_{n, k}
\end{aligned}
$$

is a "smoothing" operation

- \ldots and the reverse operation $f=\mathcal{R}^{-1} g$ amplifies higher frequencies!

These are intrinsic properties of the mathematical problem itself.

The Coefficients for the Sinogram

These are the coefficients $\left\langle g, u_{n, k}\right\rangle$ for the sinogram corresponding to the Shepp-Logan phantom - ordered according to increasing index n.

They decay, as expected. The specific behavior for $k=0, \ldots, n$ is due to the symmetry of the phantom.

Left Singular Functions $u_{n, k}$ and a "Boundary Condition"

Due to the factor $\sqrt{1-s^{2}}$, all the left singular functions satisfy

$$
u_{n, k}(\theta, s) \rightarrow 0 \quad \text { for } \quad s \rightarrow \pm 1
$$

This reflects the fact that rays through the disk \mathbb{D} that almost grace the edge of the disk contribute very little to the sinogram.

This puts a restriction on sinograms $g(\theta, s)$ that admit a reconstruction:

- The sinogram $g=\mathcal{R} f$ is a sum of the singular functions $u_{n, k}$.
- Hence, the sinogram inherits the property $g(\theta, s) \rightarrow 0$ for $s \rightarrow \pm 1$.
- A perturbation Δg of g that does not have this property may not produce a bounded perturbation $\mathcal{R}^{-1} \Delta g$ of f.

When the Noise Violates the "Boundary Condition"

We added an increased amount of noise in $g(\theta, s)$ near $s= \pm 1$.
Top: the reconstruction computed by means of FBP. Bottom: the middle vertical column of pixels. We see severe artifacts near the edge of the disk.
The artifacts are "un-physical" - specifically, some of the pixels in the reconstruction (the attenuation coefficients) have negative values.

Let's Reconstruct

In terms of the singular values and functions, the inverse Radon transform takes the form

$$
f\left(x_{1}, x_{2}\right)=\sum_{n, k} \frac{\left\langle g, u_{n, k}\right\rangle_{w}}{\sigma_{n, k}} v_{n, k}\left(x_{1}, x_{2}\right) .
$$

Since the image $f\left(x_{1}, x_{2}\right)$ has finite norm (finite energy), we conclude that the magnitude of the coefficient $\left\langle g, u_{n, k}\right\rangle_{w} / \sigma_{n, k}$ must decay "sufficiently fast."

The Picard Condition. The expansion coefficients $\left\langle g, u_{h, k}\right\rangle_{w}$ for $g(\theta, s)$ must decay sufficiently faster than the singular values $\sigma_{n, k}$, such that

$$
\sum_{n, k}\left|\frac{\left\langle g, u_{n, k}\right\rangle_{w}}{\sigma_{n, k}}\right|^{2}<\infty
$$

When noise is present in the measured sinogram $g(\theta, s)$, this condition is not satisfied for large n (cf. the signal restoration example from before). \rightarrow This calls for some kind of filtering.

Let's Introduce Filters

A simple remedy for the noise-magnification, by the division with $\sigma_{m k}$, is to introduce filtering:

$$
f\left(x_{1}, x_{2}\right)=\sum_{n, k} \varphi_{n, k} \frac{\left\langle g, u_{n, k}\right\rangle_{w}}{\sigma_{n, k}} v_{n, k}\left(x_{1}, x_{2}\right) .
$$

The filter factors $\varphi_{n, k}$ must decay fast enough that they, for large n, can counteract the growing factor $\sigma_{n, k}^{-1}$. More on this later in the course.
We can think of the filter factors as modifiers of the expansion coefficients $\left\langle g, u_{n, k}\right\rangle_{w}$ for the sinogram.
In other words, they ensure that the filtered coefficients $\varphi_{n, k}\left\langle g, u_{n, k}\right\rangle_{w}$ decay fast enough to satisfy the Picard condition from the previous slide.
The filtering inevitably dampens the higher frequencies associated with the small $\sigma_{n, k}$ and hence some details and edges in the image are lost.

Connection to Filtered Back Projection

Recall the filtered back projection (FBP) algorithm:
(1) For fixed θ compute the Fourier transform $\hat{g}(\theta, \omega)=\mathcal{F}(g(\theta, s))$.
(2) Apply the ramp filter $|\omega|$ and compute the inverse Fourier transform $g_{\text {filt }}(\theta, s)=\mathcal{F}^{-1}(|\omega| \hat{g}(\theta, \omega))$.
(3) Do the above for all $\theta \in[0,2 \pi]$.
(1) Then compute $f\left(x_{1}, x_{2}\right)=\int_{0}^{2 \pi} g_{\text {filt }}\left(x_{1} \cos \theta+x_{2} \sin \theta, \theta\right) d \theta$.

It is the ramp filter $|\omega|$ in step 2 that magnifies the higher frequencies in the sinogram $g(\theta, s)$.

This amplification is equivalent to the division by the singular values $\sigma_{n, k}$ in the above analysis.

Filtered Back Projection, now with Low-Pass Filtering

How the filtered back projection algorithm (FBP) is really implemented:
(1) Choose a low-pass filter $\varphi_{\mathrm{LP}}(\omega)$.
(2) For every θ compute the Fourier transform $\hat{g}(\theta, \omega)=\mathcal{F}(g(\theta, s))$.
(3) Apply the combined ramp \& low-pass filter, and compute the inverse Fourier transform $g_{\text {filtfilt }}(\theta, s)=\mathcal{F}^{-1}\left(|\omega| \varphi_{\mathrm{LP}}(\omega) \hat{g}(\theta, \omega)\right)$.
(9) Then $f_{\text {rec }}\left(x_{1}, x_{2}\right)=\int_{0}^{2 \pi} g_{\text {filtfilt }}\left(x_{1} \cos \theta+x_{2} \sin \theta, \theta\right) d \theta$.

The low-pass filter $\varphi_{\mathrm{LP}}(\omega)$ counteracts the ramp filter $|\omega|$ for large ω. It is equivalent to the filter factors $\varphi_{n, k}$ introduced on slide 23.

