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Some Notation

Vectors Functions

Norm (2-norm) ∥x∥22 =
n∑

i=1

|xi |2 ∥f ∥2
2
=
∫ b
a |f (x)|2 dx

= x · x = x
T
x̄ = ⟨f , f ⟩

Inner prod. x · y =
n∑

i=1

xi ȳi = x
T
ȳ ⟨f , g⟩ =

∫ b
a f (x) g(x) dx

Weighted ditto ⟨f , g⟩w =
∫ b
a f (x) g(x)w(x) dx

Orthonormal v i · v j = v
T
i v j = δij ⟨vi , vj⟩ = δij

All vectors are column vectors, the superscript �T � denotes transposition,

and a bar denotes complex conjugation.
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Reminder: Fourier Series of Periodic Functions

The Fourier series of a 2π-periodic function f is

f (x) =
∞∑

n=−∞
cn[f ] e

i n x , i =
√
−1,

with the Fourier coe�cients

cn[f ] =
1

2π

∫ π

−π
f (x) e−i n x dx = ⟨f , ψn⟩, ψn =

1

2π
ei n x .

The functions ψn form an orthogonal basis for L2(−π, π), and they are a

very convenient basis for analysing the behavior of periodic functions.
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Wanted: More Insight

We have studied an e�cient algorithm � �ltered back projection (FBP) �

for computing the CT reconstruction.

And we have also seen that the reconstruction is somewhat sensitive to

noise in the data.

How can we further study this sensitivity to noise?

How can we possibly reduce the in�uence of the noise?

What consequence does that have for the reconstruction?

We need a mathematical tool that lets us perform a detailed study of these

aspects: the singular value decomposition/expansion.

But before going into these details, we will start with a simple example

from signal processing, to explain the basic idea.
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Motivation: Signal Restoration

System

'
&

$
%Input

'
&

$
%Output⇒ ⇒

Assume that we know the characteristics of the system, and that we have

measured the noisy output signal g(t). Now we want to reconstruct the

input signal f (t).

The mathematical (forward) model, assuming 2π-periodic signals:

g(x) = K[f ](x) =

∫ π

−π
h(y − x) f (y) dy or g = h ∗ f (convolution).

Here, the function h(t) (called the �impulse response�) de�nes the system.
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Deconvolution: reconstruct input f from output g = h ∗ f
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Convolution and Deconvolution in Fourier Domain

Due to the linearity, we have

g = h ∗ f = h ∗

( ∞∑
n=−∞

cn[f ]ψn

)
=

∞∑
n=−∞

cn[f ] (h ∗ ψn).

Hence, all we need to know is the system's response h ∗ ψn to each basis

function ψn = ei n t .

For the periodic systems we consider here, the convolution of h with ψn

produces a scaled version of ψn:

h ∗ ψn = µn ψn, for all n,

where µn = ⟨h, ψn⟩ = cn[h] (no proof). Hence, with cn[g ] = ⟨g , ψn⟩:

g =
∞∑

n=−∞
cn[g ]ψn =

∞∑
n=−∞

cn[f ] cn[h]ψn = ⇔ f =
∞∑

n=−∞

cn[g ]

cn[h]
ψn.

Deconvolution is transformed to a simple algebraic operation: division.
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Straightforward Reconstruction from Noisy Data

▷ Top left: one period of input f (x) and noisy output g(x) (noise invisible).

▷ Bottom left: corresponding Fourier coe�cient; note the �noise �oor.�

▷ Top right: the reconstructed Fourier coe�cients cn[g ]/µn are dominated

by the noise for n > 100; a straightforward reconstruction is useless.

▷ Bottom right: the straightforward and useless reconstruction.
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Filtered/Truncated Reconstruction from Noisy Data

▷ Left: same as previous slide.

▷ Top right: let us keep the �rst ±100 coe�cients only.

▷ Bottom right: comparison of f (t) and the truncated reconstruction using

±100 terms in the Fourier expansion. It captures the general shape of f (t).
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What We Have Learned So Far

With the right choice of basis functions, we can turn a complicated

problem into a simper one.

Here: the basis functions are the complex exponentials;

deconvolution → division in Fourier domain.

Inspection of the expansion coe�cients reveals how and when the

noise enters in the reconstruction.

Here: the noise dominates the output's Fourier coe�cients for higher
frequencies, while the low-frequency coe�cients are ok.

We can avoid most of the noise (but not all) by means of �ltering, at

the cost of loosing some details.

Here: we simply truncate the Fourier expansion for the reconstruction.

Let us apply the same idea to parallel-beam CT reconstruction!
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The Radon Transform

θ

x1

x2

θ

θ⊥
s

Lθ,s

θ

x1

x2

s

s
g(θ, s)

The Radon transform g = R f Sometimes g is called pθ(s).

The image: f (x1, x2) with (x1, x2) ∈ D, the disk with radius 1.

The sinogram (the data): g(θ, s) with s ∈ [−1, 1] and θ ∈ [0, 2π].
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Singular Values and Singular Functions

There exist unique scalars σn,k and orthonormal functions un,k(θ, s) and
vn,k(x1, x2) such that

R vn,k = σn,k un,k , n = 0, 1, 2, 3, . . . k = 0, 1, 2, . . . , n.

The scalars are called the singular values:

σn,k = 2
√
π/(n + 1) with multiplicity n+1.

If σn,k = σj with j = 1

2
n(n+1) + k + 1, then σj ∝ j−1/4 for large j .

(The word �singular� is used in the sense �special� or �unique.�)
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The Left Singular Functions

The left singular functions are given by

un,k(θ, s) =

{
1

π

√
1− s2 Un(s) cos

(
(n−2k) θ

)
, n−2k ≥ 0

1

π

√
1− s2 Un(s) sin

(
(n−2k) θ

)
, n−2k < 0

in which Un are the Chebyshev polynomials of the second kind.

Note the convenient fact that the variables θ and s separate.
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Some Left Singular Functions for n = 0, 1, 2, 3, 4
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The Right Singular Functions

It is convenient to introduce polar coordinates (r , ϕ) such that x1 = r cosϕ
and x2 = r sinϕ. Then the right singular functions are given by

vn,k(x1, x2) = ṽn,k(r , ϕ) =

√
n + 1

π
Zn,k(r , ϕ) , (1)

where Zn,k are the (real) Zernike polynomials:

Zn,k(r , ϕ) =

{
Rn−2k
n (r) cos((n − 2k)ϕ) , 2k ≤ n

R2k−n
n (r) sin((n − 2k)ϕ) , 2k > n

k = 0, . . . , n (2)

in which

Rn−2k
n (r) = (−1)k rn−2k P

(n−2k,0)
k (1− 2r2) (3)

and where P
(n−2k,0)
k are the Jacobi polynomials.

Note the nice feature: in the form ṽn,k(r , ϕ) the variables r and ϕ separate.
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Some Right Singular Functions for n = 0, 1, 2, 3, 4
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Singular Functions and Expansions

The functions un,k are an orthonormal basis for [−1, 1]× [0, 2π].

The functions vn,k are an orthonormal basis for the unit disk D.

The expansions of f and g take the form

f (x1, x2) =
∑
n,k

⟨f , vn,k⟩ vn,k(x1, x2), g(θ, s) =
∑
n,k

⟨g , un,k⟩w un,k(θ, s).

⟨f , vn,k⟩ =

∫
2π

0

∫
1

0

ṽn,k(r , ϕ) f (r , ϕ) r dr dϕ,

⟨g , un,k⟩w =

∫
1

−1

∫
2π

0

un,k(θ, s) g(θ, s)w(s) dθ ds,

where

w(s) =
1√

1− s2
.
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What We Learned

All singular values σn,k decay, by de�nition.

Singular functions un,k and vn,k with higher index n have higher

frequencies.

The higher the frequency, the more the damping in R vn,k = σn,k un,k .

Hence the Radon transform

g =
∑
n,k

⟨g , un,k⟩w un,k = R f = R
∑
n,k

⟨f , vn,k⟩ vn,k

=
∑
n,k

⟨f , vn,k⟩R vn,k =
∑
n,k

⟨f , vn,k⟩σn,k un,k

is a �smoothing� operation

. . . and the reverse operation f = R−1g ampli�es higher frequencies!

These are intrinsic properties of the mathematical problem itself.
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The Coe�cients for the Sinogram

These are the coe�cients ⟨g , un,k⟩ for the sinogram

corresponding to the Shepp-Logan phantom � ordered

according to increasing index n.

They decay, as expected. The speci�c behavior for

k = 0, . . . , n is due to the symmetry of the phantom.
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Left Singular Functions un,k and a �Boundary Condition�

Due to the factor
√
1− s2, all the left singular functions satisfy

un,k(θ, s) → 0 for s → ±1.

This re�ects the fact that rays through the disk D that almost grace the

edge of the disk contribute very little to the sinogram.

This puts a restriction on sinograms g(θ, s) that admit a reconstruction:

The sinogram g = R f is a sum of the singular functions un,k .

Hence, the sinogram inherits the property g(θ, s) → 0 for s → ±1.

A perturbation ∆g of g that does not have this property may not

produce a bounded perturbation R−1∆g of f .
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When the Noise Violates the �Boundary Condition�

We added an increased amount of noise in g(θ, s) near s = ±1.

Top: the reconstruction computed by means of FBP. Bottom: the middle

vertical column of pixels. We see severe artifacts near the edge of the disk.

The artifacts are �un-physical� � speci�cally, some of the pixels in the

reconstruction (the attenuation coe�cients) have negative values.
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Let's Reconstruct

In terms of the singular values and functions, the inverse Radon transform

takes the form

f (x1, x2) =
∑
n,k

⟨g , un,k⟩w
σn,k

vn,k(x1, x2).

Since the image f (x1, x2) has �nite norm (�nite energy), we conclude that

the magnitude of the coe�cient ⟨g , un,k⟩w/σn,k must decay �su�ciently

fast.�

The Picard Condition. The expansion coe�cients ⟨g , uh,k⟩w for g(θ, s)
must decay su�ciently faster than the singular values σn,k , such that∑

n,k

∣∣∣∣⟨g , un,k⟩wσn,k

∣∣∣∣2 <∞.

When noise is present in the measured sinogram g(θ, s), this condition is

not satis�ed for large n (cf. the signal restoration example from before). →
This calls for some kind of �ltering.
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Let's Introduce Filters

A simple remedy for the noise-magni�cation, by the division with σmk , is to

introduce �ltering:

f (x1, x2) =
∑
n,k

φn,k
⟨g , un,k⟩w
σn,k

vn,k(x1, x2).

The �lter factors φn,k must decay fast enough that they, for large n, can
counteract the growing factor σ−1

n,k . More on this later in the course.

We can think of the �lter factors as modi�ers of the expansion coe�cients

⟨g , un,k⟩w for the sinogram.

In other words, they ensure that the �ltered coe�cients φn,k ⟨g , un,k⟩w
decay fast enough to satisfy the Picard condition from the previous slide.

The �ltering inevitably dampens the higher frequencies associated with the
small σn,k and hence some details and edges in the image are lost.
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Connection to Filtered Back Projection

Recall the �ltered back projection (FBP) algorithm:

1 For �xed θ compute the Fourier transform ĝ(θ, ω) = F
(
g(θ, s)

)
.

2 Apply the ramp �lter |ω| and compute the inverse Fourier transform

g�lt(θ, s) = F−1
(
|ω| ĝ(θ, ω)

)
.

3 Do the above for all θ ∈ [0, 2π].

4 Then compute f (x1, x2) =
∫
2π
0

g�lt(x1 cos θ + x2 sin θ, θ) dθ.

It is the ramp �lter |ω| in step 2 that magni�es the higher frequencies in

the sinogram g(θ, s).

This ampli�cation is equivalent to the division by the singular values σn,k in

the above analysis.
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Filtered Back Projection, now with Low-Pass Filtering

How the �ltered back projection algorithm (FBP) is really implemented:
1 Choose a low-pass �lter φLP(ω).
2 For every θ compute the Fourier transform ĝ(θ, ω) = F

(
g(θ, s)

)
.

3 Apply the combined ramp & low-pass �lter, and compute the inverse

Fourier transform g�lt�lt(θ, s) = F−1
(
|ω|φLP(ω) ĝ(θ, ω)

)
.

4 Then frec(x1, x2) =
∫
2π
0

g�lt�lt(x1 cos θ + x2 sin θ, θ) dθ.

The low-pass �lter φLP(ω) counteracts the ramp �lter |ω| for large ω. It is
equivalent to the �lter factors φn,k introduced on slide 23.
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