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Vectors and Images/Sinograms

Note that in the discretized problem Ax = b, the image and the sinogram

are represented by the vectors x and b, respectively.

While this is a convenient notation when we need the language of linear

algebra, they are really 2D arrays and they should be visualized as such.

In Matlab notation:

imagesc( reshape(x,N,N) ), axis image

imagesc( reshape(b,Ns,Nθ) ), axis image

where Ns = number of detector pixels, and Nθ = number of projections.

Going from an image X to a vector x is simple: just write x = X(:).
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Matrix Notation and Interpretation

All vectors are column vectors. For the system matrix we have

A =

 | | |
c1 c2 · · · cn

| | |

 =

−−− rT
1

−−−
...

−−− rTm −−−

 .

The matrix A maps the discretized absorption coe�cients (the vector x) to

the data in the detector pixels (the elements of the vector b) via:

b =


b1
b2
...

bm

 = Ax = x1 c1 + x2 c2 + · · ·+ xn cn︸ ︷︷ ︸
linear combination of columns

=


rT
1
x

rT
2
x

...

rTmx

 .

See next slides for examples of the column and row interpretations.
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Example of Column Interpretation

A 32× 32 image has four nonzero pixels with intensities 1, 0.8, 0.6, 0.4.

In the vector x , these four pixels correspond to entries 468, 618, 206, 793.

Hence the sinogram, represented as a vector b, takes the form

b = 0.6 c206 + 1.0 c468 + 0.8 c618 + 0.4 c793.

Note that each pixel is mapped to a single sinusoidal curve in the sinogram.
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Example of Row Interpretation

The ith row of A maps x to detector element i via the ith ray:

bi = r
T
i x =

n∑
j=1

aij xj , i = 1, 2, . . . ,m.

This inner product approximates the line in-

tegral along ray i in the Radon transform.

A small example:

aij = length of ray i in pixel j

r i = [ ai1 ai2 0 ai4 0 0 ai7 0 0 ]

bi = r
T
i x = ai1x + ai2y + ai4x4 + ai7x7
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Back Projection and the Matrix Transpose

Recall the back projection,

R♯[g ](x1, x2) =

∫
2π

0

g(x1 cos θ + x2 sin θ, θ) dθ,

where we integrate g along a sinusoidal curve in the sinogram:

Multiplication with the matrix transpose performs this operation:

A
T
b =

 | |
c1 · · · cn

| |

Tb =

−−− cT
1

−−−
...

−−− cTn −−−

b =

cT
1
b

...

cTn b


where each inner product cTj b corresponds to the above integration.
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And Now: The Singular Value (SVD)

Assume that A is m × n and, for simplicity, that m ≥ n:

A = U ΣV
T =

n∑
i=1

u i σi v
T
i .

Here, Σ is a diagonal matrix with the singular values, satisfying

Σ = diag(σ1, . . . , σn) , σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 .

The matrices U and V consist of singular vectors

U = (u1, . . . ,un) , V = (v1, . . . , vn)

and both matrices have orthonormal columns: UT
U = V

T
V = I n.

Then ∥A∥2 = σ1, ∥A−1∥2 = ∥V Σ−1
U

T∥2 = σ−1
n , and

cond(A) = ∥A∥2 ∥A−1∥2 = σ1/σn.
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Important SVD Relations

Relations similar to the analysis of the Radon transform:

Av i = σi u i , ∥Av i∥2 = σi , i = 1, . . . , n.

Also, if A is nonsingular, then

A
−1
u i = σ−1

i v i , ∥A−1
u i∥2 = σ−1

i , i = 1, . . . , n.

These equations are related to the solution:

x =
n∑

i=1

(vT
i x) v i

Ax =
n∑

i=1

σi (v
T
i x)u i , b =

n∑
i=1

(uT
i b)u i

A
−1
b =

n∑
i=1

uT
i b

σi
v i .
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The Naive or �Plain Vanilla Solution�

From now on, the coe�cient matrix A is allowed to have more rows than

columns, i.e.,

A ∈ Rm×n with m ≥ n.

For m > n it is natural to consider the least squares problem

min
x

∥Ax − b∥2.

Then we refer to �the naive solution� xnaive as either the solution A
−1
b

(when m = n) or the least squares solution (when m > n). While these

solutions are straightforward to compute, one should not be naive and

assume that they are always useful in CT.

We emphasize the convenient fact that both solutions has precisely the

same SVD expansion in both cases:

x
naive =

n∑
i=1

uT
i b

σi
v i .
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Computing the SVD in MATLAB

The matrix AT
A is symmetric and hence 1) its eigenvalues are real, and 2)

its eigenvectors are real and orthonormal (standard linear algebra stu�):

A
T
Av i = σ2

i v i , i = 1, 2, . . . , n.

I.e., the right singular vectors v i are the eigenvectors of AT
A and the

squared singular values are the corresponding eigenvalues.

This is not how the SVD should be computed, due to the bad in�uence of

rounding errors. Use only good numerical software. In MATLAB:

Use [U,S,V] = svd(A) or [U,S,V] = svd(A,0) to compute the full

or �economy-size� SVD.

If A is sparse the use svd(full(A)) or svd(full(A),0).

Use [U,S,V] = svds(A) to e�ciently compute a partial SVD (the

largest singular values and corresponding singular vectors).
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What the SVD Looks Like � A Simple 1D Example

We consider a very simple problem (not related to CT): determine the

elements of the vector x ∈ Rn from its cumulative sums:

bi =
1

n

i∑
j=1

xj , i = 1, 2, . . . , n . (1)

The weighting 1/n is for convenience.

Let bi be elements of a vector b. Then we have the relation Ax = b with

A =
1

n


1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
1 1 1 1 · · ·
...

...
...

...
. . .

 , A ∈ Rn×n . (2)

The solution to Ax = b is quite sensitive to errors in the right-hand side.
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The Singular Values

The singular values of A decay, according to their de�nition.

If we increase the problem szie n they slowly approach zero.

This is similar to the behavior of the singular values of the Radon transform.
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The First 10 Singular Vectors

The number of oscillations increases as the index i increases. Again, this is
similar to the behavior of the singular functions of the Radon transform.
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SVD Analysis of Cum-Sum Problem � No Noise in the Data

Left: the solution x and the corresponding noise-free right-hand side b.

Right: ingredients of the naive solution.

The singular values decay rather slowly and that the right-hand side's

coe�cients |uT
i b| decay faster than the singular values σi .
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Ill-Conditioned Problems

Discrete ill-posed problems are characterized by having coe�cient matrices

with a large condition number. The solution is very sensitive to errors in

the data.

Speci�cally, assume that the exact and perturbed solutions x̄ and x satisfy

A x̄ = b̄, Ax = b = b̄ + e,

where e denotes the perturbation (the errors and noise). Then classical

perturbation theory leads to the bound

∥x̄ − x∥2
∥x̄∥2

≤ cond(A)
∥e∥2
∥b̄∥2

.

Since cond(A) = σ1/σn is large, this implies that x = A
−1
b can be very

far from x̄ .
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The Geometry of Ill-Conditioned Problems

Rn = span{v1, . . . , vn} Rm = span{u1, . . . ,um}

•
Exact sol.: x̄

•
b̄ = A x̄-

◦ b = b̄ + e

@@R
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Naive sol.: xnaive
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SVD Insight About the Noise

Recall that the naive solution is given by

x
naive =

n∑
i=1

uT
i b

σi
v i .

When noise is present in the data b = b̄ + e, then

u
T
i b = u

T
i b̄ + u

T
i e ≈

{
uT
i b̄, |uT

i b̄| > |uT
i e|

uT
i e, |uT

i b̄| < |uT
i e|.

We note that:

Due to the Picard condition, the noise-free |uT
i b̄| decay.

The �noisy� components |uT
i b| are those for which |uT

i b̄| is small,

and they correspond to the smaller singular values σi .
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SVD Analysis of Cum-Sum Problem � With Noise in Data

Left: SVD analysis of noisy problem; the SVD coe�cients for the noisy

right-hand side level o� at 10−4 = the standard deviation of the noise.

Right: the naive solution dominated by a high-frequency perturbation.
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Spectral Filtering

Many of the noise-reducing methods treated in this course produce

solutions which can be expressed as a �ltered SVD expansion of the form

x�lt =
n∑

i=1

φi
uT
i b

σi
v i ,

where φi are the �lter factors associated with the method.

These methods are called spectral �ltering methods because the SVD basis

can be considered as a spectral basis.

A simple approach is to discard the SVD coe�cients corresponding to the

smallest singular values:

φTSVD
i =

{
1 i = 1, 2, . . . , k
0 else.

More sophisticated methods will be discussed in the third week.
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Truncated SVD

De�ne the truncated SVD (TSVD) solution as

xk =
n∑

i=1

φTSVD
i

uT
i b

σi
v i =

k∑
i=1

uT
i b

σi
v i , k < n.

Theorem. Let b = b̄ + e and let xk and x̄k denote the TSVD solutions

computed with the same k .

Then
∥x̄k − xk∥2

∥xk∥2
≤ σ1

σk

∥e∥2
∥Axk∥2

.

We see that the condition number for the TSVD solution is

κk =
σ1
σk

and it can be much smaller than cond(A) = σ1/σn.
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TSVD Solutions xk to the Noisy Cum-Sum Problem

As we increase the truncation parameter k we include more SVD

components and also more noise in xk .

At some point the noise becomes visible and then xk starts to deteriorate.
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The Truncation Parameter

Note: the truncation parameter k in

xk =
k∑

i=1

uT
i b

σi
v i

is dictated by the coe�cients uT
i b, not the singular values.

Basically we should choose k as the index i where |uT
i b| start to �level o��

due to the noise.

The TSVD solution and residual norms vary monotonically with k :

∥xk∥22 =
k∑

i=1

(
uT
i b

σi

)
≤ ∥xk+1∥22,

∥Axk − b∥22 =
n∑

i=k+1

(uT
i b)

2 ≥ ∥Axk+1 − b∥22.
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Where TSVD Fits in the Picture

Rn = span{v1, . . . , vn} Rm = span{u1, . . . ,um}

•
Exact sol.: x̄

•
b̄ = A x̄-

◦ b = b̄ + e

@@R

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�+◦
Naive sol.: xnaive

∗TSVD solution: xk
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