

Pin Count-Aware Biochemical Application
Compilation for mVLSI Biochips

Michael Lander Raagaard and Paul Pop

Technical University of Denmark, DK-2800 Kgs. Lyngby
email: paupo@dtu.dk

Abstract - Microfluidic biochips are replacing the conven-
tional biochemical analyzers and are able to integrate the
necessary functions for biochemical analysis on-chip. In
this paper we are interested in flow-based biochips, in
which the fluidic flow manipulated using integrated mi-
crovalves, which are controlled from external pressure
sources, connected to “control pins”. By combining several
microvalves, more complex units, such as micropumps,
switches, mixers, and multiplexers, can be built. The cur-
rent practice is to design these biochips by hand in draw-
ing tools such as AutoCAD, and to program them manual-
ly by individually controlling each valve. Recent research
has proposed top-down physical synthesis Computer-
Aided Design tools, and programming languages and com-
pilation techniques to automatically derive the control
signals for the valve actuations. However, researchers have
so far assumed that the number of ports used to drive the
valves (control pins) is unlimited, which has resulted in
very expensive, bulky and energy consuming off-chip con-
trol and infeasible control routes in the biochip control
layer. In this paper, we propose a methodology to reduce
the number of control pins required to run a biochemical
application. We focus on the compilation task, where the
strategy is to delay operations, without missing their dead-
lines, such that the sharing of control signals is maximized.
The evaluation shows a significant reduction in the num-
ber of control pins required.

I. INTRODUCTION

Microfluidics-based biochips have become an actively re-
searched area in recent years. Biochips integrate different
biochemical analysis functionalities (e.g., dispensers, filters,
mixers) on-chip, miniaturizing the macroscopic chemical and
biological processes to a sub-millimeter scale [1]. Microfluidic
biochips can readily facilitate clinical diagnostics, enzymatic
and proteomic analysis, cancer and stem cell research, and
automated drug discovery [2]. There are several types of mi-
crofluidic biochip platforms, each having their own ad-

vantages and limitations [8]. In this paper, we focus on the
flow-based biochips, which use microvalves to manipulate the
on-chip fluid flow [1]. By combining several microvalves,
more complex components, such as, mixers, micropumps,
multiplexers etc., can be constructed, with hundreds of units
being accommodated on one single chip. This approach is
called microfluidic Very Large Scale Integration (mVLSI) [1].

Such mVLSI biochips can be complex, for example, an
mVLSI biochip with over 25,000 valves has been demonstrat-
ed [2], and the current practice is to expose all of the biochip
components to the biochemist end-user, who has to control
individually each component (e.g., a valve) to implement the
protocols. This is like programming computers by toggling
individually each transistor.

To address this challenge, researchers have proposed lan-
guages such as BioCoder [5] and Aqua [6] (a proprietary lan-
guage from Microfluidic Innovations, LLC) and compilation
techniques, which, starting from a biochemical application,
derive the control signals (air pressure) to the valves. Re-
searchers have so far assumed that the number of ports used to
drive the valves (control pins) is unlimited, and have proposed
compilation techniques to synthesize the control signals [3].
However, the number of control pins is limited in practice,
hence researchers have proposed methods to minimize the
number of required control pins to run the application [7, 13].
Because these methods are applied after the control signals
have been synthesized, they have a limited opportunity to
reduce the number of control pins.

In this paper we propose, for the first time to our
knowledge, a pin count-aware compilation technique that aims
to reduce the number of control pins during the operation
binding and scheduling steps. This is achieved by delaying
operations, without missing their deadlines, such that the shar-
ing of control signals is maximized. The evaluation shows a
significant reduction in the number of control pins required.
The results have been validated on the Microfluidics Innova-
tion (MI) platform [6], which has 30 control pins.

(a) Microfluidic Valve (b) Schematic View (c) Biochip: Functional View
Fig. 1. Flow-based Biochip Architecture Model

a

Pressure
Source z1

Control
Layer

Flow
Layer

Valve
va

Fluidic Input

z2
z3
z4

In1 In2 In3 In4

z5

z7
z8

z11

Out2Out3Out1

v1
v2

v3

v4

v6
v5

Detector

Filter z10
z12

Mixer

z9

z13

z1 z6
v7

5.3 Biochip Control Synthesis 73

Figure 5.2: Biochip Architecture Example

flow path has an associated control layer model (given in Table 5.1) that contains
the details required for its utilization, i.e., the switch and the pump activation
details. Figure 5.3a shows the schematic view for the area marked as Region A
in Figure 5.2. For the flow path F0−1 (1 for referring to the upper half of the
mixer) that goes from In1 to Mixer1 (as shown in Figure 5.3a), the valve set
{4, 7} needs to be closed and the valve set {1, 2, 3, 8, 9, 10, 5, 6} needs to be
opened. The same is given as the control layer model of F0−1 in Table 5.1. A
pumping action then moves the fluid from In1 to the Mixer1 upper half. For
the biochip architecture in Figure 5.2, we consider that all the flow paths have
their own dedicated off-chip pumps. The pumps can, however, be easily shared
between flow paths. In that case, the flow paths that share a pump will become
mutually exclusive and will be listed as such under the routing constraints.

The components in the architecture also have control layer models. For exam-
ple, Mixer1 in Figure 5.3a is a pneumatic mixer (introduced in Section 2.1.1)
implemented using nine microfluidic valves, numbered 2 to 10. The valve set
{8, 9, 10} acts as an on-chip pump. The valve set {2, 3, 4} and the valve set
{5, 6, 7} act as switches. The two switches facilitate the inputs and outputs,
and the pump performs mixing.

The mixer has five operational phases. The first two phases represent the input
of two samples for mixing (filling the upper and lower half of the mixer), followed
by the mixing phase (Mix). The mixed sample is then transported out of the
mixer in the last two phases, emptying the two halves.

In order to perform mixing (once both halves are filled), the mixer input and
output valves {2, 6} are closed while valves {3, 4, 5, 7} (see Figure 5.3a) are

II. SYSTEM MODEL

A. Biochip Architecture Model
Fig. 1b shows the schematic view of a flow-based biochip

with four input ports and three output ports, a mixer, a filter
and a detector. The control pins are marked with a red “x”
symbol and are labeled with zi. Fig. 1c shows the functional
level view of another chip, which we will use as an example.
An mVLSI biochip is manufactured using multilayer soft
lithography [1]. A cheap, rubber-like elastomer (polydime-
thylsiloxane, PDMS) with good biocompatibility and optical
transparency is used as the fabrication substrate. Physically,
the biochip can have multiple layers, but the layers are logical-
ly divided into two types: flow layer (depicted in blue) and the
control layer (depicted in red). The liquid in the flow layer is
manipulated using the control layer.

The basic building block of such a biochip is a valve (see
Fig. 1a), which is used to manipulate the fluid in the flow layer
as the valves restrict/permit the fluid flow. The control layer
(red) is connected to an external air pressure source. The flow
layer (blue) is connected to a fluid reservoir through a pump
that generates the fluid flow. When the pressure source is not
active, the fluid is permitted to flow freely (open valve). When
the pressure source is activated, high pressure causes the elas-
tic control layer to pinch the underlying flow layer (point a in
Fig.1a) blocking the fluid flow at point a (closed valve).

The component modeling framework consists of a flow lay-
er model and a control layer model. The flow layer model of
each component is characterized by a set of operational phas-
es, execution time and the component geometrical dimensions.
The control layer model captures the valve actuation details
required for the on-chip execution of the component operation.
The following table shows the flow layer model library of
seven commonly utilized microfluidic components:

For example, Mixer1 in Fig. 2a is a pneumatic mixer imple-

mented using nine microfluidic valves, numbered 2 to 10. The
valve set {8, 9, 10} acts as an on-chip pump. The valve set {2,
3, 4} and the valve set {5, 6, 7} act as switches. The two
switches facilitate the inputs and outputs, and the pump is used
to perform the mixing. As shown in the table, the mixer has
five operational phases. The first two phases (Ip1, Ip2) repre-
sent the input of two fluid samples that need to be mixed (fill-
ing the upper and lower half of the mixer), followed by the
mixing phase (Mix). The mixed sample is then transported out
of the mixer in the last two phases (Op1 and Op2, emptying
the two halves).

In order to perform mixing (once both halves are filled), the

mixer input and output valves {2, 6} are closed while valves
{3, 4, 5, 7} are opened and the mixing operation is initiated
(Fig. 2c). Valve set {8, 9, 10} acts as a peristaltic pump. Clos-
ing valve 8 inserts some pressure on the fluid inside the mixer,
closing valve 9 creates further pressure, and then as valve 10 is
closed valve 8 is opened again. This forces the liquid to rotate
clockwise in the mixer. The valves are closed and opened in a
sequence such that the liquid rotates at a certain speed accom-
plishing the mixing operation. The control layer of the mixing
phase is a part of the component model.

The pressure to the microvalves is delivered through off-
chip control pins, which connect the pressure sources, via the
control channels, to the microvalves. The pressure is turned on
and off via off-chip expensive and bulky solenoid valves,
which are in turn controlled by a computer. Fig. 4c shows an
mVLSI biochip control system from Microfluidics Innovation,
LLC, which has 30 pressure control pins, interfaced to the
biochip through a manifold.

B. Biochemical Application Model
We model a biochemical application using a sequencing

graph [4]. Such a graph can be obtained by processing the
source code of a high-level language, e.g., BioCoder or Aqua.
Each vertex represents an operation that can be bound to a
component. Each vertex has an associated weight Ci(Mj),
which denotes the execution time required for the operation Oi
to be completed on component Mj. The execution times pro-
vided in the previous table are the typical execution times for
the particular component types, i.e., typical mixing time is 0.5
s but a biochemical application description may specify a
longer time (e.g., 5 s) if required for a certain operation. An
edge from Oi to Oj indicates that the output of Oi is the input of
Oj. An operation can start when all its inputs have arrived. Fig.
2b shows an example of a biochemical application. We as-
sume that the designer has specified a deadline D for the ap-
plication, which is the latest time when the application has to
complete its execution.

IV. CONTROL PIN MINIMIZATION STRATEGY
The overall strategy for control pin minimization is present-

ed in Fig. 3, and has 5 steps. The focus of this paper is on step
1 “Compilation”. The related work for step 1 was covered in
the introduction, and the related work for steps 2 to 5 is men-
tioned during the discussion of the respective step.

(a) Region A in Fig. 1c (b) Application model example
Fig. 2. Schematic view and application example

74 Control Synthesis

(a) Region A in Figure 5.2 (b) Application Graph

Figure 5.3: Schematic View and Application Example

opened and the mixing operation is initiated. Valve set {8, 9, 10} acts as a
peristaltic pump. Closing valve 8 inserts some pressure on the fluid inside the
mixer, closing valve 9 creates further pressure, then as valve 10 is closed valve
8 is opened again. This forces the liquid to rotate clockwise in the mixer. The
valves are closed and opened in a sequence such that the liquid rotates at a
certain speed accomplishing the mixing operation. The control layer of the
mixing phase is a part of the component model. Table 5.2 shows the control
layer model for all components in the biochip in Figure 5.2. The control layer
details are only for the functional phase of the component. For example for
Mixer1, the control details are for the Mix operation for which the valve set
{2, 6} is closed, {3, 4, 5, 7} is opened and {8, 9, 10} is in the mixing state
(opening and closing in a predefined sequence). Valve sequences for the heaters,
filters and detectors are also given. In addition to these valve activations, the
relevant component also needs to be activated, e.g., optical sensor present in
the detector needs to start operation as soon as the associated valves have been
activated.

The input and output phases of the components are modeled using flow paths
(and their associated control layers) in the architecture model. For example, the
input to Mixer1 from In1 in Figure 5.3a is modeled by the flow path F0−x (see
Table 5.1) and its activation is done using the associated control layer. Note
that the mix valves (e.g., valve set {8, 9, 10} for Mixer1) need to stay open for
the input and output phases of the mixer. Mix valves are active only when the

74 Control Synthesis

(a) Region A in Figure 5.2 (b) Application Graph

Figure 5.3: Schematic View and Application Example

opened and the mixing operation is initiated. Valve set {8, 9, 10} acts as a
peristaltic pump. Closing valve 8 inserts some pressure on the fluid inside the
mixer, closing valve 9 creates further pressure, then as valve 10 is closed valve
8 is opened again. This forces the liquid to rotate clockwise in the mixer. The
valves are closed and opened in a sequence such that the liquid rotates at a
certain speed accomplishing the mixing operation. The control layer of the
mixing phase is a part of the component model. Table 5.2 shows the control
layer model for all components in the biochip in Figure 5.2. The control layer
details are only for the functional phase of the component. For example for
Mixer1, the control details are for the Mix operation for which the valve set
{2, 6} is closed, {3, 4, 5, 7} is opened and {8, 9, 10} is in the mixing state
(opening and closing in a predefined sequence). Valve sequences for the heaters,
filters and detectors are also given. In addition to these valve activations, the
relevant component also needs to be activated, e.g., optical sensor present in
the detector needs to start operation as soon as the associated valves have been
activated.

The input and output phases of the components are modeled using flow paths
(and their associated control layers) in the architecture model. For example, the
input to Mixer1 from In1 in Figure 5.3a is modeled by the flow path F0−x (see
Table 5.1) and its activation is done using the associated control layer. Note
that the mix valves (e.g., valve set {8, 9, 10} for Mixer1) need to stay open for
the input and output phases of the mixer. Mix valves are active only when the

TABLE I
: Biochip Flow Path Set (F), Control Layer Model and Routing Constraints (K)

Flow Paths Control Layer Model Routing Constraints
Flow Path Closed Valves Open Valves

F0−x = (In1, Mixer1), 2 s F0−1 4, 7, 67 1, 2, 3, 5, 6, 8, 9, 10, 68 K3−x : F10−x
F1−x = (Mixer1, Filter1), 2 s F0−2 3, 5, 67 1, 2, 4, 6, 7, 68, 8, 9, 10 K8−x : F12−x
F2 = (Filter1, Heater2), 2 s ... K10−x : F3−x
... F6−1 30, 33, 71 27, 28, 29, 34, 35, 36, 31, 32, 72 K12−x : F8−x
F6−x = (In2, Mixer2), 2 s F6−2 29, 31, 71 27, 28, 30, 33, 32, 72, 34, 35, 36
... ...
F11 = (In3, Heater1), 2 s F11 64 42, 43, 44, 63
F12−x = (Heater1, S 1, Mixer3), 3 s ...

closed valve 8 is opened again. This forces the liquid to rotate
clockwise in the mixer. The valves are closed and opened in a
sequence such that the liquid rotates at a certain speed accom-
plishing the mixing operation. The control layer of the mixing
phase is a part of the component model. Table III shows the
control layer model for all components in the biochip in Fig. 2b.
The control layer details are only for the functional phase of the
component. For example for Mixer1, the control details are for
the Mix operation for which the valve set {2, 6} is closed, {3,
4, 5, 7} is opened and {8, 9, 10} is in the mixing state (opening
and closing in a predefined sequence). Valve sequences for the
heaters, filters and detectors are also given. In addition to these
valve activations, the relevant component also needs to be acti-
vated, e.g., optical sensor present in the detector needs to start
operation as soon as the associated valves have been activated.
The input and output phases of the components are modeled

using flow paths (and their associated control layers) in the ar-
chitecture model. For example, the input to Mixer1 from In1
in Fig. 2c is modeled by the flow path F0−x (see Table I) and
its activation is done using the associated control layer. Note
that the mix valves (e.g., valve set {8, 9, 10} for Mixer1) need
to stay open for the input and output phases of the mixer. Mix
valves are active only when the mixing is intended and need to
be kept open after the mixing is done, until the desired mixed
fluid has been taken out emptying the mixer.

B. Biochemical Application Model

We model a biochemical application using a sequencing
graph. The graph G(O,E) is directed, acyclic and polar. Fig. 2a
shows an example of a biochemical application. Each vertex

TABLE II
: Component Library (L): Flow Layer Model

Exec.
Component Phases (P) Time (C)
Mixer Ip1/ Ip2/Mix/ Op1/ Op2 0.5 s
Filter Ip/ Filter/ Op1/ Op2 20 s
Detector Ip/ Detect/ op 5 s
Separator Ip1/ Ip2/ Separate/ Op1/ Op2 140 s
Heater Ip/ Heat/ Op 20 C/s
Metering Ip/Met/ Op1/ Op2 -
Storage Ip or Op -

TABLE III
: Component Control Layer Model for Fig. 2b

Component Open Closed Mixing
Valves Valves Valves

Mixer1 3, 4, 5, 7 2, 6 8, 9, 10
Mixer2 29, 30, 31, 33 28, 32 34, 35, 36
Mixer3 49, 50, 51, 53 48, 52 54, 55, 56
Mixer4 19, 20, 21, 23 18, 22 37, 38, 39
Heater1 - 43, 44 -
Heater2 - 13, 14 -
Filter1 - 11, 12 -
Filter2 - 57, 58 -
Detector1 - 40, 41 -
Detector2 - 24, 25 -

Oi ∈ O represents an operation that can be bound to a com-
ponent. Each vertex has an associated weight Ci(Mj), which
denotes the execution time required for the operation Oi to be
completed on component Mj. The execution times provided in
Table II are the typical execution times for the particular com-
ponent types, i.e., typical mixing time is 0.5 s but a biochemical
application description may specify a longer time (e.g., 5 s) if
required for a certain operation. The edge set E models the de-
pendency constraints in the assay, i.e., an edge ei, j ∈ E from
Oi to Oj indicates that the output of Oi is the input of Oj. An
operation can start when all its inputs have arrived.

III. Biochip Control Synthesis

The following subsections explain the tasks involved in the
biochip control synthesis using Fig. 2 as an illustrative exam-
ple. Our proposed solution is discussed in Section 4.

A. Control Logic Generation
Generating the control logic η means deciding which valves

to close/ open, in what sequence, at what time and for how
long, in order to implement a biochemical application G on the
chip architectureA. It consists of the following two steps:

A.1 Application Mapping

This step consists of performing the binding and scheduling of
the biochemical operations O onto the chip components M as

(1) As a first step, we perform a compilation of the bio-
chemical application. The compilation step takes as input the
biochemical application model (see Section II.B), which is
derived from the biochemical protocol, expressed in natural
language or in a high-level language such as Aqua or BioCod-
er. We are currently working on software to automatically
derive a sequencing graph from Aqua source code. The compi-
lation step also requires as input the biochip architecture mod-
el on which the application has to run, see Section II.A. The
compilation process is a NP-complete problem, which, con-
sists of the following tasks: resource binding, scheduling and
fluid routing. The output of the compilation is a schedule ta-
ble. For the example biochip architecture model in Fig. 1c, and
the example application model in Fig. 2b, one possible sched-
ule table is depicted in Fig. 4a. Section IV.C presents our pin-
count aware compilation approached, aiming at reducing the
number of control pins.

(2) In the second step, we perform control synthesis. Start-
ing from a schedule produced in the previous compilation step,
we derive the control logic η, which contains the activation
status of all valves on the chip, for all time steps of the sched-
ule. Consider the example in which the application in Fig. 2b
is executed on the biochip in Fig. 1c (the schedule for this
example is shown in Fig. 4a). The control logic presented in
Fig. 4b gives the activation status of the valves shown in Fig.

2a for the schedule duration 0 to 8 s. Each row in the Fig. 4b
represents the activation status of a valve. First column con-
tains the valve number and the remaining columns represent
the activation status of the valve for the time steps present in
the schedule. For example, the first row in Fig. 4b represents
the activation status of valve 1. A 0 as activation status repre-
sents an open valve, 1 a closed valve and X represents a don’t-
care, i.e., the valve may be opened or closed without having
any influence on the application execution. For example, valve
1 (row 1 in Fig. 4b), is opened at time 0 s, stays open at 2 s
and then its status changes to a don’t-care at 4 s. This is be-
cause from 0 to 4 s, F0−1 and F0−2 are executed, as shown in
the schedule in Fig. 4a, filling the upper and lower halves of
Mixer1. At 4 s, both fluid samples are inside the mixer, there-
fore valve 2 closes in order to start the mixing operation (valve
2 status changes to 1 at 4 s in Fig. 4b). Once valve 2 is closed,
the status of valve 1 switches to a don’t-care. This is because
valve 1 and valve 2 are placed in series on the flow channel
and once valve 2 is closed, opening or closing of valve 1 has
no impact on the application execution. The mix valves (e.g.,
valve 8, 9, 10 in Mixer1) act as a pump in order to achieve
mixing. This pumping is also included in η and for simplicity,
it is shown as “Mix” in Fig. 4b. The mix valves are opened
and closed at a certain frequency in order to achieve mixing,
and this opening and closing continues even between time
steps.

 (3) On-/Off-chip control trade-off. As mentioned, the mi-
crovalves are controlled by pressure. A channel in the control
layer is connects a control pin to the microvalve. Flexible
tubing connects the off-chip solenoid valves to the control
pins. See Fig. 4c for a setup where 30 solenoid valves (in the
white box behind the biochip) are connected to 30 control
pins, which in turn control 30 microvalves. So far, all the
biochip control has been performed “off chip”, i.e., done by
controlling the off-chip solenoid valves attached to the control
pins. This has created a situation where instead of having a
“lab-on-a-chip” we actually have a “chip-in-a-lab”, connected
to off-chip systems through a maze of tubing. This off-chip
control is expensive, bulky, and power hungry, and hence is an
obstacle to the use of biochips in personal diagnostics, emerg-
ing economies, etc.

As a solution to this problem, researchers have started to
propose on-chip control using pneumatics, and have proposed
multiplexers (see Fig. 6c, where with 8 pressure inputs we can
drive 16 pressure outputs, reducing thus the number of control

Fig. 3 Overview of the minimization strategy

(a) Schedule for the application in Fig. 2b running on the biochip in Fig. 1c (b) Control signals to valves (c) MI mVLSI biochip [6]
Fig. 4. Schedule and associated control signals to the valves

1. Compilation

2. Control synthesis

3. On–/off–chip
control trade-off

4. Valve minimization

5. Physical Synthesis

OA

OBMixer2

Mixer1

OA

OBMixer2

Mixer1

Off-Chip Control

Off-Chip
Control

B
io

ch
ip

O
n

-C
h

ip
 C

o
n

tr
o

l

B
io

ch
ip

76 Control Synthesis

Figure 5.4: Example Schedule

0 as activation status represents an open valve, 1 a closed valve and X represents
a don’t-care, i.e., the valve may be opened or closed without having any influence
on the application execution. For example, valve 1 (row 1 in Table 5.3), is
opened at time 0 s, stays open at 2 s and then its status changes to a don’t-care
at 4 s. This is because from 0 to 4 s, F0−1 and F0−2 are executed, as shown
in the schedule in Figure 5.4, filling the upper and lower halves of Mixer1 (see
Table 5.1). At 4 s, both fluid samples are inside the mixer, therefore valve 2
closes in order to start the mixing operation (valve 2 status changes to 1 at
4 s in Table 5.3). Once valve 2 is closed, the status of valve 1 switches to a
don’t-care. This is because valve 1 and valve 2 are placed in series on the flow
channel (see Figure 5.3a) and once valve 2 is closed, opening or closing of valve
1 has no impact on the application execution. The mix valves (e.g., valve 8, 9,
10 in Mixer1) act as a pump in order to achieve mixing [55]. This pumping is
also included in η and for simplicity, it is shown as “Mix” in Table 5.3. The mix
valves are opened and closed at a certain frequency in order to achieve mixing,
and this opening and closing continues even between time steps.

5.3.2 Pin Count Minimization

The biochip architecture may contain some valves that are never closed during
the application execution. These valves are redundant and can be removed re-
ducing the pin count, e.g., valve 1 in Table 5.3 is never closed and is therefore
redundant. Connecting each valve to a separate control pin results in too many

5.3 Biochip Control Synthesis 77

Table 5.3: Control Logic (η) Table - For Valves in Figure 5.3a
Valve Time Steps (s) Color
No. 0 2 4 5 8 ...
1 0 0 X X 0 ... -
2 0 0 1 1 0 ... Color - 0
3 0 1 0 0 1 ... Color - 11
4 1 0 0 0 0 ... Color - 1
5 0 1 0 0 1 ... Color - 11
6 0 0 1 1 0 ... Color - 0
7 1 0 0 0 0 ... Color - 1
8 0 0 Mix Mix 0 ... Color - 14
9 0 0 Mix Mix 0 ... Color - 8
10 0 0 Mix Mix 0 ... Color - 2
...
27 0 0 X X X ... -
28 0 0 1 1 1 ... Color - 3
29 0 1 0 0 0 ... Color - 6
30 1 0 0 0 0 ... Color - 1
31 0 1 0 0 0 ... Color - 6
32 0 0 1 1 1 ... Color - 3
33 1 0 0 0 0 ... Color - 1
34 0 0 Mix Mix Mix ... Color - 9
35 0 0 Mix Mix Mix ... Color - 4
36 0 0 Mix Mix Mix ... Color - 7
...
42 0 X X X X ... -
43 0 1 1 X X ... Color - 13
44 0 1 1 X X ... Color - 13
...
89 X X X X X ... Color - 4

pin-outs from the chip limiting the chip scalability. In order to minimize the pin
count, a strategy is needed in order to share the control pins between different
valves that perform in unison with each other throughout the application exe-
cution schedule. For example in Table 5.3, valve 2 and valve 6 have identical
activation sequence in all time steps and therefore, can share the same control
pin. Similarly, valve 1 and 2 also have the same sequence (X for valve 1 at time
steps 4 and 5 means that valve 1 can be switched to 1 or 0 without affecting the
application execution) and can share the control pins.

89 valves !
485 time steps"

pins required), pneumatic transistors, memory latches, logic
gates, shift-registers, adders, and even clocks and finite-state
machines [9, 10, 11]. The vision is to move all the off-chip
control on-chip, removing completely the dependence on ex-
ternal control. A more realistic scenario is to find the right
trade-off between off-chip and on-chip control, depending on
the constraints imposed by the designer. For example, if the
off-chip control already has 30 pressure ports (such as the
control box from MI), then only the rest of the control signals
would be moved on-chip. Another constraint can be the on-
chip area available for on-chip control, which can take signifi-
cant space. We see this as an interesting on/off-chip control
trade-off problem. At the moment this trade-off and the design
of the on-chip control are performed manually. In our future
work we plan to develop computer-aided design tools, which
can automatically decide on the right trade-off between off-
and on-chip control (depending on the constraints provided by
the designer) and synthesize the on-chip control.

(4) Valve minimization. The biochip architecture may con-
tain some valves that are never closed during the application
execution. These valves are redundant and can be removed
reducing the pin count, e.g., valve 1 in Fig. 4b is never closed
and is therefore redundant. Connecting each valve to a sepa-
rate control pin results in too many pin-outs from the chip
limiting the chip scalability. In order to minimize the pin
count, a strategy is needed to share the control pins between
different valves that perform in unison with each other
throughout the application execution schedule. For example in
Fig. 4b, valve 2 and valve 6 have identical activation sequence
in all time steps and therefore, can share the same control pin.
Similarly, valve 1 and 2 also have the same sequence (X for
valve 1 at time steps 4 and 5 means that valve 1 can be
switched to 1 or 0 without affecting the application execution)
and can share the control pins. We discuss a possible solution
to the valve minimization step in Section IV.B.

(5) Physical synthesis. Motivated by the similarity between
VLSI and mVLSI, we have proposed an mVLSI design flow
[12, 16, 18, 20], and have developed tools for the physical
design of biochips. Given the system specifications (e.g., ap-
plication requirements, chip area), the mVLSI design flow
starts with the schematic design of the required biochip. This
is followed by the physical synthesis of the flow layer, i.e.,
placement of components and routing of flow channels while
following the design rules. After the flow channels have been
routed, the channel lengths and therefore the routing latencies
for the fluids that traverse these channels can now be calculat-
ed. Next, the given biochemical application is mapped onto
this biochip architecture and the optimized schedule for its
execution is generated. Based on the schedule, the control
information (which valves to open and close at what time and
for how long) can now be extracted. This is followed by the
control layer routing and then the chip design is ready to be
sent for fabrication.

Researchers have proposed placement algorithms [12, 14,
15, 16] for the flow layer, routing approaches for the flow
layer [12, 17, 18], as well as integrated approaches for the
placement and routing [12, 16]. Regarding the control layer,
recent research has addressed the control channel routing [18,
19, 20]. For our control pin minimization strategy, we assume
that we get as input an initial flow layer “netlist”, i.e., the
components and their interconnections, and that we know the

channel delays, i.e., the flow channels have been routed. This
is needed to determine the schedule for the operations in the
biochemical application. However, once we perform the trade-
off between off- and on-chip control in step 3, we will need to
add the on-chip control to the biochip layout. We do this by
using the flow-layer physical tools we have developed [12,
16]. Also, only after performing the valve minimization in step
4, we will know how the on-chip microvalves have to be con-
nected to the output ports (and which microvalves share can
share the control signals). We use our proposed physical syn-
thesis tools for the routing of on-chip control channels [18, 20]
to determine the physical layout of the control layer.

A. Control Synthesis
The control logic η is generated by fetching the control lay-

er model of the biochip flow paths and components (part of
the biochip architecture model), and utilizing them to translate
the schedule into the valve activation sequence. At every time
step of the schedule (generated in the previous step), we look
at the active flow paths and operations, fetch the associated
control layer models and populate the table representing the
control logic. The valves that need to be opened are given a
status 0, the ones that need to be closed 1 and to the set of
valves that are mixing the status “Mix” is allotted. All other
valves are set as X (don’t-care) for this time step and then the
algorithm moves on to the next time step. For example at time
step 2, operation O3 and flow paths F0−2, F6−2 are active, as
shown in the schedule in Fig. 4a. Operation O3 is bound to
Heater1, so we fetch the control layer model for Heater1 from
the table according to which valves 43, 44 should be closed.
The status for these valves is thus set to 1 at time step 2 in the
control logic (Fig. 4b). Similarly the control layer models for
the flow paths F0−2 and F6−2 are fetched from the component
library and the valves involved are set to either 1 or 0, depend-
ing on whether they needed to be closed or opened. All other
valves (except the mix valves) are set to the status X.

The mix valves are assigned a don’t care status X only
when either both halves of the mixer are empty, or when the
mixed fluid in only one half of the mixer was required for the
application and that half has been emptied. When mix valves
(e.g., {8, 9, 10} for Mixer1) are set to X, the input and output
valves of the respective mixer ({2, 6} for Mixer1) need to be
closed. This ensures that if these mix valves (e.g., {8, 9, 10} of
Mixer1) share control pins with other mix valves (e.g., {34, 35,
36} for Mixer2) and a pumping action is performed because of
this, the pumping affect is contained inside the mixer and does
not affect the rest of the chip operation.

For our example, we need 89 control pins to control the 89
valves on the chip.

B. Valve Minimization
The pin count minimization problem has previously been

reduced to a graph coloring problem (GCP) [22]. In GCP, the
nodes in the coloring graph need to be colored using minimum
number of colors, in such a way that no two adjacent nodes
have the same color. The graph G is created by considering
each valve as a separate node in the graph. An edge is made
between two nodes if a time step exists in the schedule for
which the valves (represented by the nodes) have a different
activation status.

Before we generate the graph, we remove redundant valves,

if any, from the biochip architecture. Redundant valves are the
ones that are never closed during the entire application execu-
tion, e.g., valve 1, 27 and 42 in Fig. 4b are redundant valves as
their status is never set to 1. These valves can be removed
from the chip architecture as their presence has no effect on
the application execution.

Next, we create the graph G by considering each valve in
Fig. 4b as a separate node in the graph (redundant valves are
not considered). An edge is made between two nodes if a time
step exists in the schedule for which the valves (represented by
the nodes) have a different activation status. For example, the
nodes representing valve 2 and valve 6 will not have an edge
between them as they operate in unison throughout the sched-
ule as shown in Fig. 4b, but an edge will be made between
valve 2 and 3 since their activation status vary at time step 2
(valve 2 is open and valve 3 is closed). The graph is complete
once all edges have been drawn. The graph for Fig. 4b has 83
nodes (total valves were 89, 6 were found to be redundant and
were removed) and 1312 edges.

The problem for pin count minimization is now represented
in the form of a classical graph coloring problem. Once the
colors have been assigned, the nodes that have the same color
will share the same control pin.

Considering the complexity of the problem, different me-
taheuristic techniques have also been used extensively for
finding good graph coloring solutions, especially when there
are a large number of nodes. We use a Tabu Search-based
optimization scheme in order to perform the pin count mini-
mization [13].

C. Pin Count-Aware Compilation
For our example, we need to control 89 valves. We are in-

terested to reduce the number of needed control pins. For
example, the MI chip has only 30 control pins. The maximum
number theoretically available is limited by the size of the chip
(each pin takes space) and the number of off-chip solenoid
valves available.

Such control pin minimization approaches are applied after
the schedule has been generated. However, the scheduling step
offers a greater opportunity to reduce the number of control
pins, e.g., by attempting to synchronize operations, allowing
multiple valves to share the same control.

We propose a new scheduling technique, which produces a
schedule such that the number of edges in the coloring graph
G is minimized and the application deadline is satisfied. By
minimizing the number of edges in the graph G during sched-

uling, we are able to significantly reduce the number of con-
trol pins compared to the related work.

The proposed technique is based on a List Scheduling (LS)
heuristic [21]. LS heuristics use a sorted priority list, Lready,
containing the operations ready to be scheduled. An operation
Oi is ready if all the predecessor operations have finished
executing and all the incoming fluids are received. We use the
“urgency” priority function [21] to sort Lready. However, com-
pared to the original LS, we do not immediately schedule a
ready operation Oi. Let us assume that we would schedule Oi
at time ti. Instead, before scheduling Oi, we incrementally
delay Oi with on time step, i.e., ti + 1, ti + 2, etc., up to ALAPi,
where ALAPi is the as-late-as-possible start of Oi such that the
deadline D of the biochemical application is not exceeded. The
value of ALAPi for each operation is determined by perform-
ing ALAP scheduling [21] on the application graph. For each
increment ti + j, we create a new coloring graph G, as dis-
cussed in Section IV.B. We record that increment j, which
corresponds to the minimum number of edges in G. We then
schedule Oi at time step ti + j, with j as determined earlier.

Let us consider the example in Fig. 5, where we have al-
ready scheduled operation OB on Mixer2 as depicted in Fig. 5a,
and we need to decide how to schedule operation OA on Mix-
er1. Let us assume that Mixer1 is controlled by 9 valves, v2 to
v10, and Mixer2 by valves v28 to v36, see Fig. 2a. If we schedule
operation OA at the earliest time when it is ready for execution,
such as in Fig. 5a, we will need 18 control signals to operate
the two mixers. However, if we delay the execution of OA to
the time depicted in Fig. 5b, we overlap the execution of the
two mixers, such that their valves operate synchronously, and
thus can share the control signals. In this case, only 9 control
signals are needed to operate the two mixers.

Please note that this is a heuristic algorithm, i.e., it is not

(a) No valve sharing: 18 control pins are needed to run the 2 mixers

(b) Overlapped operation: 9 control pins are needed to run the 2 mixers

Fig. 5. Delaying operations to maximize overlap

(a) Expensive, bulky and power hungry on-chip control

(b) Part of the off-chip control has been moved on-chip

(c) 8:16 on-chip muliplexer for on-chip control [23]

Fig. 6. Trade-off between off- and on-chip control

1. Compilation

2. Control Synthesis

3. On/off – Chip
Control Trade-off

4. Valve minimization

5. Physical Synthesis

OA

OBMixer2

Mixer1

OA

OBMixer2

Mixer1

Off-Chip Control

Off-Chip
Control

B
io

ch
ip

O
n
-C

h
ip

 C
o
n
tr

o
l

B
io

ch
ip

1. Compilation

2. Control Synthesis

3. On/off – Chip
Control Trade-off

4. Valve minimization

5. Physical Synthesis

OA

OBMixer2

Mixer1

OA

OBMixer2

Mixer1

Off-Chip Control

Off-Chip
Control

B
io

ch
ip

O
n

-C
h

ip
 C

o
n

tr
o

l

B
io

ch
ip

1. Compilation

2. Control synthesis

3. On–/off–chip
control trade-off

4. Valve minimization

5. Physical Synthesis

OA

OBMixer2

Mixer1

OA

OBMixer2

Mixer1

Off-Chip Control

Off-Chip
Control

B
io

ch
ip

O
n
-C

h
ip

 C
o
n
tr

o
l

B
io

ch
ip

1. Compilation

2. Control synthesis

3. On–/off–chip
control trade-off

4. Valve minimization

5. Physical Synthesis

OA

OBMixer2

Mixer1

OA

OBMixer2

Mixer1

Off-Chip Control

Off-Chip
Control

B
io

ch
ip

O
n

-C
h

ip
 C

o
n

tr
o

l

B
io

ch
ip

guaranteed to lead to the minimum number of control pins.
We are using the number of edges in G as a “proxy cost func-
tion” instead of actually finding out the number of “colors” in
the graph G, which would be too time consuming to do within
LS. However, for our example, we are able to reduce the num-
ber of control pins from 89 (which cannot be implemented on
the MI chip) to a final number of 12 (after all the steps in the
strategy), less than the 30 available pins, which shows that the
heuristic is able to reduce the number of control pins during
the scheduling step.

IV. CONCLUSIONS AND FUTURE WORK
In this paper we have addressed flow-based biochips where

the building block is a microvalve, which is used to build more
complex components. We have proposed a general strategy to
minimize the number of control pins needed to run a biochem-
ical application on a given biochip architecture. The strategy
consists of 5 steps, (1) compilation, (2) control synthesis, (3)
on/off-chip control trade-off, (4) valve minimization and (5)
physical synthesis. The focus of the paper was on the compila-
tion step, which aims at minimizing the number of signals
needed to control the microvalves, by maximizing the signal
sharing among the microvalves. We have proposed a List
Scheduling-based heuristic for the pin count-aware compila-
tion (step 1), and we have discussed the existing solutions for
steps 2 to 5. The proposed methodology was validated on a
case study implemented using a microfluidic control system
from MI. As future work, it would be interesting to propose a
better solution to the compilation task, which uses as cost
function the number of control pins, and not the number of
edges in the control graph. This could be achieved also by
integrating steps (1) compilation and (4) valve minimization
into a single optimization problem. In addition, it would be
interesting to investigate solutions to the on/off-chip control
trade-off, by deciding automatically on the part of the off-chip
control that should be moved on-chip and synthesizing the
required on-chip circuitry and physical layout.

REFERENCES
[1] I. E. Araci and S. R. Quake, “Microfluidic very large scale

integration (mvlsi) with integrated micromechanical
valves,” Lab Chip, vol. 12, pp. 2830–2806, 2012.

[2] J. M. Perkel, “Microfluidics - bringing new things to life
science,” Science, November 2008.

[3] W. H. Minhass, P. Pop, and J. Madsen, “System-level
modeling and synthesis of flow-based microfluidic bio-
chips” in Proceedings of the International Conference on
Compilers, Architectures and Synthesis of Embedded Sys-
tems (CASES), 2011.

[4] K. Chakrabarty and J. Zeng. “Design automation for micro-
fluidics-based biochips”. Journal on Emerging Technolo-
gies in Computing Systems, 1(3): 186–223, 2005.

[5] http://research.microsoft.com/en-
us/um/india/projects/biocoder/

[6] http://microfluidicinnovations.com
[7] N. Amin, “Computer-Aided Design for Multilayer Micro-

fluidic Chips”, master’s thesis, Massachusetts Institute of
Ttechnology, December 2008.

[8] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R.
Zengerle. “Microfluidic lab-on-a-chip platforms: require-
ments, characteristics and applications.” Chem. Soc. Rev.,
39:1153–1182, 2010

[9] W. H. Grover, R. H. C. Ivester, E. C. Jensen, R. A. Ma-
thies. “Development and multiplexed control of latching
pneumatic valves using microfluidic logical structures”, in
Lab on a Chip 6, no. 5 623-631, 2006.

 [10] T. V. Nguyen, S. Ahrar, P. N. Duncan, E. E. Hui. “Micro-
fluidic finite state machine for autonomous control of inte-
grated fluid networks”, in Proc. of Micro Total Analysis
Systems, pp. 741-743. 2011.

[11] P. N. Duncan, T. V. Nguyen, E. E. Hui. "Pneumatic oscilla-
tor circuits for timing and control of integrated microfluid-
ics." Proceedings of the National Academy of Sciences 110,
no. 45, 18104-18109, 2013.

[12] W. H. Minhass, P. Pop, J. Madsen, F. S. Blaga. “Architec-
tural Synthesis of Flow-Based Microfluidic Large-Scale In-
tegration Biochips”, in International Conference on Com-
pilers, Architecture and Synthesis for Embedded Systems.
Association for Computing Machinery, pp. 181– 190, 2012.

[13] W. H. Minhass, P. Pop, J. Madsen, T.-Y. Ho. “Control Syn-
thesis for the Flow- Based Microfluidic Large-Scale Inte-
gration Biochips”, in Asia and South Pacific Design Auto-
mation Conference, pp. 205–212, 2013.

[14] J. McDaniel, B. Parker, and P. Brisk, “Simulated Anneal-
ing-based Placement for Microfluidic Large Scale Integra-
tion (mLSI) Chips,” in Proceedings of the International
Conference on Very Large Scale Integration (VLSI-SoC),
pp. 213–218, 2014.

[15] K.-H. Tseng, S.-C. You, J.-Y. Liou, and T.-Y. Ho, “A top-
down synthesis methodology for flow-based microfluidic
biochips considering valve- switching minimization,” in
Proceedings of the 2013 ACM international symposium on
International symposium on physical design, pp. 123–129,
2013.

[16] M. Raagaard, “Placement algorithm for flow-based micro-
fluidic biochips,” B.Sc. Thesis, Technical University of
Denmark, 2014.

[17] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. Lee, and T.-Y. Ho,
“An efficient bi-criteria flow channel routing algorithm for
flow-based microfluidic biochips,” in Proceedings of the
Design Automation Conference, pp. 1–6, 2014.

[18] M. S. Hørslev-Petersen, T. O. Risager, “Routing algorithms
for flow- based microfluidic very large scale integration bi-
ochips,” B.Sc. Thesis, Technical University of Denmark,
2013.

[19] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Con-
trol-layer optimization for flow-based mVLSI microfluidic
biochips,” in Proceedings of the 2014 International Con-
ference on Compilers, Architecture and Synthesis for Em-
bedded Systems, p. 16, 2014.

[20] T. S. Rasmussen, “Routing algorithm for the control layer
of flow-based biochips”, B.Sc. Thesis, Technical Universi-
ty of Denmark, 2014.

[21] O. Sinnen, Task Scheduling for Parallel Systems, John
Wiley & Sons, 2007.

[22] N. Amin, W. Thies, and S. Amarasinghe, “Computer-aided
design for microfluidic chips based on multilayer soft li-
thography,” in Proceedings of the IEEE International Con-
ference on Computer Design, 2009.

[23] W. H. Grover, R. A. Mathies, “Monolithic Membrane
Valves and Pumps”, chapter in Lab-on-a-Chip Technology
(Editors: Keith E. Herold and Avraham Rasooly), Caister
Academic Press, 2009.

