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Abstract - Microfluidic biochips are replacing the conven-
tional biochemical analyzers and are able to integrate the 
necessary functions for biochemical analysis on-chip. In 
this paper we are interested in flow-based biochips, in 
which the fluidic flow manipulated using integrated mi-
crovalves, which are controlled from external pressure 
sources, connected to “control pins”. By combining several 
microvalves, more complex units, such as micropumps, 
switches, mixers, and multiplexers, can be built. The cur-
rent practice is to design these biochips by hand in draw-
ing tools such as AutoCAD, and to program them manual-
ly by individually controlling each valve. Recent research 
has proposed top-down physical synthesis Computer-
Aided Design tools, and programming languages and com-
pilation techniques to automatically derive the control 
signals for the valve actuations. However, researchers have 
so far assumed that the number of ports used to drive the 
valves (control pins) is unlimited, which has resulted in 
very expensive, bulky and energy consuming off-chip con-
trol and infeasible control routes in the biochip control 
layer. In this paper, we propose a methodology to reduce 
the number of control pins required to run a biochemical 
application. We focus on the compilation task, where the 
strategy is to delay operations, without missing their dead-
lines, such that the sharing of control signals is maximized. 
The evaluation shows a significant reduction in the num-
ber of control pins required. 

I.  INTRODUCTION 

Microfluidics-based biochips have become an actively re-
searched area in recent years. Biochips integrate different 
biochemical analysis functionalities (e.g., dispensers, filters, 
mixers) on-chip, miniaturizing the macroscopic chemical and 
biological processes to a sub-millimeter scale [1]. Microfluidic 
biochips can readily facilitate clinical diagnostics, enzymatic 
and proteomic analysis, cancer and stem cell research, and 
automated drug discovery [2]. There are several types of mi-
crofluidic biochip platforms, each having their own ad-

vantages and limitations [8]. In this paper, we focus on the 
flow-based biochips, which use microvalves to manipulate the 
on-chip fluid flow [1]. By combining several microvalves, 
more complex components, such as, mixers, micropumps, 
multiplexers etc., can be constructed, with hundreds of units 
being accommodated on one single chip. This approach is 
called microfluidic Very Large Scale Integration (mVLSI) [1].  

Such mVLSI biochips can be complex, for example, an 
mVLSI biochip with over 25,000 valves has been demonstrat-
ed [2], and the current practice is to expose all of the biochip 
components to the biochemist end-user, who has to control 
individually each component (e.g., a valve) to implement the 
protocols. This is like programming computers by toggling 
individually each transistor.  

To address this challenge, researchers have proposed lan-
guages such as BioCoder [5] and Aqua [6] (a proprietary lan-
guage from Microfluidic Innovations, LLC) and compilation 
techniques, which, starting from a biochemical application, 
derive the control signals (air pressure) to the valves. Re-
searchers have so far assumed that the number of ports used to 
drive the valves (control pins) is unlimited, and have proposed 
compilation techniques to synthesize the control signals [3]. 
However, the number of control pins is limited in practice, 
hence researchers have proposed methods to minimize the 
number of required control pins to run the application [7, 13]. 
Because these methods are applied after the control signals 
have been synthesized, they have a limited opportunity to 
reduce the number of control pins. 

In this paper we propose, for the first time to our 
knowledge, a pin count-aware compilation technique that aims 
to reduce the number of control pins during the operation 
binding and scheduling steps. This is achieved by delaying 
operations, without missing their deadlines, such that the shar-
ing of control signals is maximized. The evaluation shows a 
significant reduction in the number of control pins required. 
The results have been validated on the Microfluidics Innova-
tion (MI) platform [6], which has 30 control pins. 

 

 

 

(a) Microfluidic Valve (b) Schematic View (c) Biochip: Functional View 
Fig. 1. Flow-based Biochip Architecture Model 
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Figure 5.2: Biochip Architecture Example

flow path has an associated control layer model (given in Table 5.1) that contains
the details required for its utilization, i.e., the switch and the pump activation
details. Figure 5.3a shows the schematic view for the area marked as Region A
in Figure 5.2. For the flow path F0−1 (1 for referring to the upper half of the
mixer) that goes from In1 to Mixer1 (as shown in Figure 5.3a), the valve set
{4, 7} needs to be closed and the valve set {1, 2, 3, 8, 9, 10, 5, 6} needs to be
opened. The same is given as the control layer model of F0−1 in Table 5.1. A
pumping action then moves the fluid from In1 to the Mixer1 upper half. For
the biochip architecture in Figure 5.2, we consider that all the flow paths have
their own dedicated off-chip pumps. The pumps can, however, be easily shared
between flow paths. In that case, the flow paths that share a pump will become
mutually exclusive and will be listed as such under the routing constraints.

The components in the architecture also have control layer models. For exam-
ple, Mixer1 in Figure 5.3a is a pneumatic mixer (introduced in Section 2.1.1)
implemented using nine microfluidic valves, numbered 2 to 10. The valve set
{8, 9, 10} acts as an on-chip pump. The valve set {2, 3, 4} and the valve set
{5, 6, 7} act as switches. The two switches facilitate the inputs and outputs,
and the pump performs mixing.

The mixer has five operational phases. The first two phases represent the input
of two samples for mixing (filling the upper and lower half of the mixer), followed
by the mixing phase (Mix). The mixed sample is then transported out of the
mixer in the last two phases, emptying the two halves.

In order to perform mixing (once both halves are filled), the mixer input and
output valves {2, 6} are closed while valves {3, 4, 5, 7} (see Figure 5.3a) are



 

II.  SYSTEM MODEL 

A.  Biochip Architecture Model 
Fig. 1b shows the schematic view of a flow-based biochip 

with four input ports and three output ports, a mixer, a filter 
and a detector. The control pins are marked with a red “x” 
symbol and are labeled with zi. Fig. 1c shows the functional 
level view of another chip, which we will use as an example. 
An mVLSI biochip is manufactured using multilayer soft 
lithography [1]. A cheap, rubber-like elastomer (polydime-
thylsiloxane, PDMS) with good biocompatibility and optical 
transparency is used as the fabrication substrate. Physically, 
the biochip can have multiple layers, but the layers are logical-
ly divided into two types: flow layer (depicted in blue) and the 
control layer (depicted in red). The liquid in the flow layer is 
manipulated using the control layer. 

The basic building block of such a biochip is a valve (see 
Fig. 1a), which is used to manipulate the fluid in the flow layer 
as the valves restrict/permit the fluid flow. The control layer 
(red) is connected to an external air pressure source. The flow 
layer (blue) is connected to a fluid reservoir through a pump 
that generates the fluid flow. When the pressure source is not 
active, the fluid is permitted to flow freely (open valve). When 
the pressure source is activated, high pressure causes the elas-
tic control layer to pinch the underlying flow layer (point a in 
Fig.1a) blocking the fluid flow at point a (closed valve).  

The component modeling framework consists of a flow lay-
er model and a control layer model. The flow layer model of 
each component is characterized by a set of operational phas-
es, execution time and the component geometrical dimensions. 
The control layer model captures the valve actuation details 
required for the on-chip execution of the component operation. 
The following table shows the flow layer model library of 
seven commonly utilized microfluidic components: 

 
For example, Mixer1 in Fig. 2a is a pneumatic mixer imple-

mented using nine microfluidic valves, numbered 2 to 10. The 
valve set {8, 9, 10} acts as an on-chip pump. The valve set {2, 
3, 4} and the valve set {5, 6, 7} act as switches. The two 
switches facilitate the inputs and outputs, and the pump is used 
to perform the mixing. As shown in the table, the mixer has 
five operational phases. The first two phases (Ip1, Ip2) repre-
sent the input of two fluid samples that need to be mixed (fill-
ing the upper and lower half of the mixer), followed by the 
mixing phase (Mix). The mixed sample is then transported out 
of the mixer in the last two phases (Op1 and Op2, emptying 
the two halves). 

In order to perform mixing (once both halves are filled), the 

mixer input and output valves {2, 6} are closed while valves 
{3, 4, 5, 7} are opened and the mixing operation is initiated 
(Fig. 2c). Valve set {8, 9, 10} acts as a peristaltic pump. Clos-
ing valve 8 inserts some pressure on the fluid inside the mixer, 
closing valve 9 creates further pressure, and then as valve 10 is 
closed valve 8 is opened again. This forces the liquid to rotate 
clockwise in the mixer. The valves are closed and opened in a 
sequence such that the liquid rotates at a certain speed accom-
plishing the mixing operation. The control layer of the mixing 
phase is a part of the component model. 

The pressure to the microvalves is delivered through off-
chip control pins, which connect the pressure sources, via the 
control channels, to the microvalves. The pressure is turned on 
and off via off-chip expensive and bulky solenoid valves, 
which are in turn controlled by a computer. Fig. 4c shows an 
mVLSI biochip control system from Microfluidics Innovation, 
LLC, which has 30 pressure control pins, interfaced to the 
biochip through a manifold.  

B.  Biochemical Application Model 
We model a biochemical application using a sequencing 

graph [4]. Such a graph can be obtained by processing the 
source code of a high-level language, e.g., BioCoder or Aqua. 
Each vertex represents an operation that can be bound to a 
component. Each vertex has an associated weight Ci(Mj), 
which denotes the execution time required for the operation Oi 
to be completed on component Mj. The execution times pro-
vided in the previous table are the typical execution times for 
the particular component types, i.e., typical mixing time is 0.5 
s but a biochemical application description may specify a 
longer time (e.g., 5 s) if required for a certain operation. An 
edge from Oi to Oj indicates that the output of Oi is the input of 
Oj. An operation can start when all its inputs have arrived. Fig. 
2b shows an example of a biochemical application. We as-
sume that the designer has specified a deadline D for the ap-
plication, which is the latest time when the application has to 
complete its execution. 

IV.  CONTROL PIN MINIMIZATION STRATEGY 
The overall strategy for control pin minimization is present-

ed in Fig. 3, and has 5 steps. The focus of this paper is on step 
1 “Compilation”. The related work for step 1 was covered in 
the introduction, and the related work for steps 2 to 5 is men-
tioned during the discussion of the respective step. 

  

(a) Region A in Fig. 1c (b) Application model example 
Fig. 2. Schematic view and application example 
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(a) Region A in Figure 5.2 (b) Application Graph

Figure 5.3: Schematic View and Application Example

opened and the mixing operation is initiated. Valve set {8, 9, 10} acts as a
peristaltic pump. Closing valve 8 inserts some pressure on the fluid inside the
mixer, closing valve 9 creates further pressure, then as valve 10 is closed valve
8 is opened again. This forces the liquid to rotate clockwise in the mixer. The
valves are closed and opened in a sequence such that the liquid rotates at a
certain speed accomplishing the mixing operation. The control layer of the
mixing phase is a part of the component model. Table 5.2 shows the control
layer model for all components in the biochip in Figure 5.2. The control layer
details are only for the functional phase of the component. For example for
Mixer1, the control details are for the Mix operation for which the valve set
{2, 6} is closed, {3, 4, 5, 7} is opened and {8, 9, 10} is in the mixing state
(opening and closing in a predefined sequence). Valve sequences for the heaters,
filters and detectors are also given. In addition to these valve activations, the
relevant component also needs to be activated, e.g., optical sensor present in
the detector needs to start operation as soon as the associated valves have been
activated.

The input and output phases of the components are modeled using flow paths
(and their associated control layers) in the architecture model. For example, the
input to Mixer1 from In1 in Figure 5.3a is modeled by the flow path F0−x (see
Table 5.1) and its activation is done using the associated control layer. Note
that the mix valves (e.g., valve set {8, 9, 10} for Mixer1) need to stay open for
the input and output phases of the mixer. Mix valves are active only when the
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opened and the mixing operation is initiated. Valve set {8, 9, 10} acts as a
peristaltic pump. Closing valve 8 inserts some pressure on the fluid inside the
mixer, closing valve 9 creates further pressure, then as valve 10 is closed valve
8 is opened again. This forces the liquid to rotate clockwise in the mixer. The
valves are closed and opened in a sequence such that the liquid rotates at a
certain speed accomplishing the mixing operation. The control layer of the
mixing phase is a part of the component model. Table 5.2 shows the control
layer model for all components in the biochip in Figure 5.2. The control layer
details are only for the functional phase of the component. For example for
Mixer1, the control details are for the Mix operation for which the valve set
{2, 6} is closed, {3, 4, 5, 7} is opened and {8, 9, 10} is in the mixing state
(opening and closing in a predefined sequence). Valve sequences for the heaters,
filters and detectors are also given. In addition to these valve activations, the
relevant component also needs to be activated, e.g., optical sensor present in
the detector needs to start operation as soon as the associated valves have been
activated.

The input and output phases of the components are modeled using flow paths
(and their associated control layers) in the architecture model. For example, the
input to Mixer1 from In1 in Figure 5.3a is modeled by the flow path F0−x (see
Table 5.1) and its activation is done using the associated control layer. Note
that the mix valves (e.g., valve set {8, 9, 10} for Mixer1) need to stay open for
the input and output phases of the mixer. Mix valves are active only when the

TABLE I
: Biochip Flow Path Set (F ), Control Layer Model and Routing Constraints (K)

Flow Paths Control Layer Model Routing Constraints
Flow Path Closed Valves Open Valves

F0−x = (In1, Mixer1), 2 s F0−1 4, 7, 67 1, 2, 3, 5, 6, 8, 9, 10, 68 K3−x : F10−x
F1−x = (Mixer1, Filter1), 2 s F0−2 3, 5, 67 1, 2, 4, 6, 7, 68, 8, 9, 10 K8−x : F12−x
F2 = (Filter1, Heater2), 2 s ... K10−x : F3−x
... F6−1 30, 33, 71 27, 28, 29, 34, 35, 36, 31, 32, 72 K12−x : F8−x
F6−x = (In2, Mixer2), 2 s F6−2 29, 31, 71 27, 28, 30, 33, 32, 72, 34, 35, 36
... ...
F11 = (In3, Heater1), 2 s F11 64 42, 43, 44, 63
F12−x = (Heater1, S 1, Mixer3), 3 s ...

closed valve 8 is opened again. This forces the liquid to rotate
clockwise in the mixer. The valves are closed and opened in a
sequence such that the liquid rotates at a certain speed accom-
plishing the mixing operation. The control layer of the mixing
phase is a part of the component model. Table III shows the
control layer model for all components in the biochip in Fig. 2b.
The control layer details are only for the functional phase of the
component. For example for Mixer1, the control details are for
the Mix operation for which the valve set {2, 6} is closed, {3,
4, 5, 7} is opened and {8, 9, 10} is in the mixing state (opening
and closing in a predefined sequence). Valve sequences for the
heaters, filters and detectors are also given. In addition to these
valve activations, the relevant component also needs to be acti-
vated, e.g., optical sensor present in the detector needs to start
operation as soon as the associated valves have been activated.
The input and output phases of the components are modeled

using flow paths (and their associated control layers) in the ar-
chitecture model. For example, the input to Mixer1 from In1
in Fig. 2c is modeled by the flow path F0−x (see Table I) and
its activation is done using the associated control layer. Note
that the mix valves (e.g., valve set {8, 9, 10} for Mixer1) need
to stay open for the input and output phases of the mixer. Mix
valves are active only when the mixing is intended and need to
be kept open after the mixing is done, until the desired mixed
fluid has been taken out emptying the mixer.

B. Biochemical Application Model

We model a biochemical application using a sequencing
graph. The graph G(O,E) is directed, acyclic and polar. Fig. 2a
shows an example of a biochemical application. Each vertex

TABLE II
: Component Library (L): Flow Layer Model

Exec.
Component Phases (P) Time (C)
Mixer Ip1/ Ip2/Mix/ Op1/ Op2 0.5 s
Filter Ip/ Filter/ Op1/ Op2 20 s
Detector Ip/ Detect/ op 5 s
Separator Ip1/ Ip2/ Separate/ Op1/ Op2 140 s
Heater Ip/ Heat/ Op 20 C/s
Metering Ip/Met/ Op1/ Op2 -
Storage Ip or Op -

TABLE III
: Component Control Layer Model for Fig. 2b

Component Open Closed Mixing
Valves Valves Valves

Mixer1 3, 4, 5, 7 2, 6 8, 9, 10
Mixer2 29, 30, 31, 33 28, 32 34, 35, 36
Mixer3 49, 50, 51, 53 48, 52 54, 55, 56
Mixer4 19, 20, 21, 23 18, 22 37, 38, 39
Heater1 - 43, 44 -
Heater2 - 13, 14 -
Filter1 - 11, 12 -
Filter2 - 57, 58 -
Detector1 - 40, 41 -
Detector2 - 24, 25 -

Oi ∈ O represents an operation that can be bound to a com-
ponent. Each vertex has an associated weight Ci(Mj), which
denotes the execution time required for the operation Oi to be
completed on component Mj. The execution times provided in
Table II are the typical execution times for the particular com-
ponent types, i.e., typical mixing time is 0.5 s but a biochemical
application description may specify a longer time (e.g., 5 s) if
required for a certain operation. The edge set E models the de-
pendency constraints in the assay, i.e., an edge ei, j ∈ E from
Oi to Oj indicates that the output of Oi is the input of Oj. An
operation can start when all its inputs have arrived.

III. Biochip Control Synthesis

The following subsections explain the tasks involved in the
biochip control synthesis using Fig. 2 as an illustrative exam-
ple. Our proposed solution is discussed in Section 4.

A. Control Logic Generation
Generating the control logic η means deciding which valves

to close/ open, in what sequence, at what time and for how
long, in order to implement a biochemical application G on the
chip architectureA. It consists of the following two steps:

A.1 Application Mapping

This step consists of performing the binding and scheduling of
the biochemical operations O onto the chip components M as



 

(1) As a first step, we perform a compilation of the bio-
chemical application. The compilation step takes as input the 
biochemical application model (see Section II.B), which is 
derived from the biochemical protocol, expressed in natural 
language or in a high-level language such as Aqua or BioCod-
er. We are currently working on software to automatically 
derive a sequencing graph from Aqua source code. The compi-
lation step also requires as input the biochip architecture mod-
el on which the application has to run, see Section II.A. The 
compilation process is a NP-complete problem, which, con-
sists of the following tasks: resource binding, scheduling and 
fluid routing. The output of the compilation is a schedule ta-
ble. For the example biochip architecture model in Fig. 1c, and 
the example application model in Fig. 2b, one possible sched-
ule table is depicted in Fig.  4a. Section IV.C presents our pin-
count aware compilation approached, aiming at reducing the 
number of control pins. 

(2) In the second step, we perform control synthesis. Start-
ing from a schedule produced in the previous compilation step, 
we derive the control logic η, which contains the activation 
status of all valves on the chip, for all time steps of the sched-
ule. Consider the example in which the application in Fig. 2b 
is executed on the biochip in Fig. 1c (the schedule for this 
example is shown in Fig. 4a). The control logic presented in 
Fig. 4b gives the activation status of the valves shown in Fig. 

2a for the schedule duration 0 to 8 s. Each row in the Fig. 4b 
represents the activation status of a valve. First column con-
tains the valve number and the remaining columns represent 
the activation status of the valve for the time steps present in 
the schedule. For example, the first row in Fig. 4b represents 
the activation status of valve 1. A 0 as activation status repre-
sents an open valve, 1 a closed valve and X represents a don’t-
care, i.e., the valve may be opened or closed without having 
any influence on the application execution. For example, valve 
1 (row 1 in Fig. 4b), is opened at time 0 s, stays open at 2 s 
and then its status changes to a don’t-care at 4 s. This is be-
cause from 0 to 4 s, F0−1 and F0−2 are executed, as shown in 
the schedule in Fig. 4a, filling the upper and lower halves of 
Mixer1. At 4 s, both fluid samples are inside the mixer, there-
fore valve 2 closes in order to start the mixing operation (valve 
2 status changes to 1 at 4 s in Fig. 4b). Once valve 2 is closed, 
the status of valve 1 switches to a don’t-care. This is because 
valve 1 and valve 2 are placed in series on the flow channel 
and once valve 2 is closed, opening or closing of valve 1 has 
no impact on the application execution. The mix valves (e.g., 
valve 8, 9, 10 in Mixer1) act as a pump in order to achieve 
mixing. This pumping is also included in η and for simplicity, 
it is shown as “Mix” in Fig. 4b. The mix valves are opened 
and closed at a certain frequency in order to achieve mixing, 
and this opening and closing continues even between time 
steps. 

 (3) On-/Off-chip control trade-off. As mentioned, the mi-
crovalves are controlled by pressure. A channel in the control 
layer is connects a control pin to the microvalve. Flexible 
tubing connects the off-chip solenoid valves to the control 
pins. See Fig. 4c for a setup where 30 solenoid valves (in the 
white box behind the biochip) are connected to 30 control 
pins, which in turn control 30 microvalves. So far, all the 
biochip control has been performed “off chip”, i.e., done by 
controlling the off-chip solenoid valves attached to the control 
pins. This has created a situation where instead of having a 
“lab-on-a-chip” we actually have a “chip-in-a-lab”, connected 
to off-chip systems through a maze of tubing. This off-chip 
control is expensive, bulky, and power hungry, and hence is an 
obstacle to the use of biochips in personal diagnostics, emerg-
ing economies, etc.  

As a solution to this problem, researchers have started to 
propose on-chip control using pneumatics, and have proposed 
multiplexers (see Fig. 6c, where with 8 pressure inputs we can 
drive 16 pressure outputs, reducing thus the number of control 

 
Fig. 3 Overview of the minimization strategy 

 
  

(a) Schedule for the application in Fig. 2b running on the biochip in Fig. 1c (b) Control signals to valves (c) MI mVLSI biochip [6] 
Fig. 4. Schedule and associated control signals to the valves 

  

1. Compilation

2. Control synthesis

3. On–/off–chip
control trade-off

4. Valve minimization

5. Physical Synthesis

OA

OBMixer2

Mixer1

OA

OBMixer2

Mixer1

Off-Chip Control

Off-Chip
Control

B
io

ch
ip

O
n

-C
h

ip
 C

o
n

tr
o

l

B
io

ch
ip

76 Control Synthesis

Figure 5.4: Example Schedule

0 as activation status represents an open valve, 1 a closed valve and X represents
a don’t-care, i.e., the valve may be opened or closed without having any influence
on the application execution. For example, valve 1 (row 1 in Table 5.3), is
opened at time 0 s, stays open at 2 s and then its status changes to a don’t-care
at 4 s. This is because from 0 to 4 s, F0−1 and F0−2 are executed, as shown
in the schedule in Figure 5.4, filling the upper and lower halves of Mixer1 (see
Table 5.1). At 4 s, both fluid samples are inside the mixer, therefore valve 2
closes in order to start the mixing operation (valve 2 status changes to 1 at
4 s in Table 5.3). Once valve 2 is closed, the status of valve 1 switches to a
don’t-care. This is because valve 1 and valve 2 are placed in series on the flow
channel (see Figure 5.3a) and once valve 2 is closed, opening or closing of valve
1 has no impact on the application execution. The mix valves (e.g., valve 8, 9,
10 in Mixer1) act as a pump in order to achieve mixing [55]. This pumping is
also included in η and for simplicity, it is shown as “Mix” in Table 5.3. The mix
valves are opened and closed at a certain frequency in order to achieve mixing,
and this opening and closing continues even between time steps.

5.3.2 Pin Count Minimization

The biochip architecture may contain some valves that are never closed during
the application execution. These valves are redundant and can be removed re-
ducing the pin count, e.g., valve 1 in Table 5.3 is never closed and is therefore
redundant. Connecting each valve to a separate control pin results in too many
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Table 5.3: Control Logic (η) Table - For Valves in Figure 5.3a
Valve Time Steps (s) Color
No. 0 2 4 5 8 ...
1 0 0 X X 0 ... -
2 0 0 1 1 0 ... Color - 0
3 0 1 0 0 1 ... Color - 11
4 1 0 0 0 0 ... Color - 1
5 0 1 0 0 1 ... Color - 11
6 0 0 1 1 0 ... Color - 0
7 1 0 0 0 0 ... Color - 1
8 0 0 Mix Mix 0 ... Color - 14
9 0 0 Mix Mix 0 ... Color - 8
10 0 0 Mix Mix 0 ... Color - 2
... ... ... ... ... ... ... ...
27 0 0 X X X ... -
28 0 0 1 1 1 ... Color - 3
29 0 1 0 0 0 ... Color - 6
30 1 0 0 0 0 ... Color - 1
31 0 1 0 0 0 ... Color - 6
32 0 0 1 1 1 ... Color - 3
33 1 0 0 0 0 ... Color - 1
34 0 0 Mix Mix Mix ... Color - 9
35 0 0 Mix Mix Mix ... Color - 4
36 0 0 Mix Mix Mix ... Color - 7
... ... ... ... ... ... ... ...
42 0 X X X X ... -
43 0 1 1 X X ... Color - 13
44 0 1 1 X X ... Color - 13
... ... ... ... ... ... ... ...
89 X X X X X ... Color - 4

pin-outs from the chip limiting the chip scalability. In order to minimize the pin
count, a strategy is needed in order to share the control pins between different
valves that perform in unison with each other throughout the application exe-
cution schedule. For example in Table 5.3, valve 2 and valve 6 have identical
activation sequence in all time steps and therefore, can share the same control
pin. Similarly, valve 1 and 2 also have the same sequence (X for valve 1 at time
steps 4 and 5 means that valve 1 can be switched to 1 or 0 without affecting the
application execution) and can share the control pins.

89 valves !
485 time steps"



 

pins required), pneumatic transistors, memory latches, logic 
gates, shift-registers, adders, and even clocks and finite-state 
machines [9, 10, 11]. The vision is to move all the off-chip 
control on-chip, removing completely the dependence on ex-
ternal control. A more realistic scenario is to find the right 
trade-off between off-chip and on-chip control, depending on 
the constraints imposed by the designer. For example, if the 
off-chip control already has 30 pressure ports (such as the 
control box from MI), then only the rest of the control signals 
would be moved on-chip. Another constraint can be the on-
chip area available for on-chip control, which can take signifi-
cant space. We see this as an interesting on/off-chip control 
trade-off problem. At the moment this trade-off and the design 
of the on-chip control are performed manually. In our future 
work we plan to develop computer-aided design tools, which 
can automatically decide on the right trade-off between off- 
and on-chip control (depending on the constraints provided by 
the designer) and synthesize the on-chip control. 

(4) Valve minimization. The biochip architecture may con-
tain some valves that are never closed during the application 
execution. These valves are redundant and can be removed 
reducing the pin count, e.g., valve 1 in Fig. 4b is never closed 
and is therefore redundant. Connecting each valve to a sepa-
rate control pin results in too many pin-outs from the chip 
limiting the chip scalability. In order to minimize the pin 
count, a strategy is needed to share the control pins between 
different valves that perform in unison with each other 
throughout the application execution schedule. For example in 
Fig. 4b, valve 2 and valve 6 have identical activation sequence 
in all time steps and therefore, can share the same control pin. 
Similarly, valve 1 and 2 also have the same sequence (X for 
valve 1 at time steps 4 and 5 means that valve 1 can be 
switched to 1 or 0 without affecting the application execution) 
and can share the control pins. We discuss a possible solution 
to the valve minimization step in Section IV.B. 

(5) Physical synthesis. Motivated by the similarity between 
VLSI and mVLSI, we have proposed an mVLSI design flow 
[12, 16, 18, 20], and have developed tools for the physical 
design of biochips. Given the system specifications (e.g., ap-
plication requirements, chip area), the mVLSI design flow 
starts with the schematic design of the required biochip. This 
is followed by the physical synthesis of the flow layer, i.e., 
placement of components and routing of flow channels while 
following the design rules. After the flow channels have been 
routed, the channel lengths and therefore the routing latencies 
for the fluids that traverse these channels can now be calculat-
ed. Next, the given biochemical application is mapped onto 
this biochip architecture and the optimized schedule for its 
execution is generated. Based on the schedule, the control 
information (which valves to open and close at what time and 
for how long) can now be extracted. This is followed by the 
control layer routing and then the chip design is ready to be 
sent for fabrication.  

Researchers have proposed placement algorithms [12, 14, 
15, 16] for the flow layer, routing approaches for the flow 
layer [12, 17, 18], as well as integrated approaches for the 
placement and routing [12, 16]. Regarding the control layer, 
recent research has addressed the control channel routing [18, 
19, 20].  For our control pin minimization strategy, we assume 
that we get as input an initial flow layer “netlist”, i.e., the 
components and their interconnections, and that we know the 

channel delays, i.e., the flow channels have been routed. This 
is needed to determine the schedule for the operations in the 
biochemical application. However, once we perform the trade-
off between off- and on-chip control in step 3, we will need to 
add the on-chip control to the biochip layout. We do this by 
using the flow-layer physical tools we have developed [12, 
16]. Also, only after performing the valve minimization in step 
4, we will know how the on-chip microvalves have to be con-
nected to the output ports (and which microvalves share can 
share the control signals). We use our proposed physical syn-
thesis tools for the routing of on-chip control channels [18, 20] 
to determine the physical layout of the control layer.  

A.  Control Synthesis 
The control logic η is generated by fetching the control lay-

er model of the biochip flow paths and components (part of 
the biochip architecture model), and utilizing them to translate 
the schedule into the valve activation sequence. At every time 
step of the schedule (generated in the previous step), we look 
at the active flow paths and operations, fetch the associated 
control layer models and populate the table representing the 
control logic. The valves that need to be opened are given a 
status 0, the ones that need to be closed 1 and to the set of 
valves that are mixing the status “Mix” is allotted. All other 
valves are set as X (don’t-care) for this time step and then the 
algorithm moves on to the next time step. For example at time 
step 2, operation O3 and flow paths F0−2, F6−2 are active, as 
shown in the schedule in Fig. 4a. Operation O3 is bound to 
Heater1, so we fetch the control layer model for Heater1 from 
the table according to which valves 43, 44 should be closed. 
The status for these valves is thus set to 1 at time step 2 in the 
control logic (Fig. 4b). Similarly the control layer models for 
the flow paths F0−2 and F6−2 are fetched from the component 
library and the valves involved are set to either 1 or 0, depend-
ing on whether they needed to be closed or opened. All other 
valves (except the mix valves) are set to the status X. 

The mix valves are assigned a don’t care status X only 
when either both halves of the mixer are empty, or when the 
mixed fluid in only one half of the mixer was required for the 
application and that half has been emptied. When mix valves 
(e.g., {8, 9, 10} for Mixer1) are set to X, the input and output 
valves of the respective mixer ({2, 6} for Mixer1) need to be 
closed. This ensures that if these mix valves (e.g., {8, 9, 10} of 
Mixer1) share control pins with other mix valves (e.g., {34, 35, 
36} for Mixer2) and a pumping action is performed because of 
this, the pumping affect is contained inside the mixer and does 
not affect the rest of the chip operation. 

For our example, we need 89 control pins to control the 89 
valves on the chip. 

B.  Valve Minimization 
The pin count minimization problem has previously been 

reduced to a graph coloring problem (GCP) [22]. In GCP, the 
nodes in the coloring graph need to be colored using minimum 
number of colors, in such a way that no two adjacent nodes 
have the same color. The graph G is created by considering 
each valve as a separate node in the graph. An edge is made 
between two nodes if a time step exists in the schedule for 
which the valves (represented by the nodes) have a different 
activation status.  

Before we generate the graph, we remove redundant valves, 



 

if any, from the biochip architecture. Redundant valves are the 
ones that are never closed during the entire application execu-
tion, e.g., valve 1, 27 and 42 in Fig. 4b are redundant valves as 
their status is never set to 1. These valves can be removed 
from the chip architecture as their presence has no effect on 
the application execution. 

Next, we create the graph G by considering each valve in 
Fig. 4b as a separate node in the graph (redundant valves are 
not considered). An edge is made between two nodes if a time 
step exists in the schedule for which the valves (represented by 
the nodes) have a different activation status. For example, the 
nodes representing valve 2 and valve 6 will not have an edge 
between them as they operate in unison throughout the sched-
ule as shown in Fig. 4b, but an edge will be made between 
valve 2 and 3 since their activation status vary at time step 2 
(valve 2 is open and valve 3 is closed). The graph is complete 
once all edges have been drawn. The graph for Fig. 4b has 83 
nodes (total valves were 89, 6 were found to be redundant and 
were removed) and 1312 edges. 

The problem for pin count minimization is now represented 
in the form of a classical graph coloring problem. Once the 
colors have been assigned, the nodes that have the same color 
will share the same control pin. 

Considering the complexity of the problem, different me-
taheuristic techniques have also been used extensively for 
finding good graph coloring solutions, especially when there 
are a large number of nodes. We use a Tabu Search-based 
optimization scheme in order to perform the pin count mini-
mization [13]. 

C.  Pin Count-Aware Compilation 
For our example, we need to control 89 valves. We are in-

terested to reduce the number of needed control pins. For 
example, the MI chip has only 30 control pins. The maximum 
number theoretically available is limited by the size of the chip 
(each pin takes space) and the number of off-chip solenoid 
valves available. 

Such control pin minimization approaches are applied after 
the schedule has been generated. However, the scheduling step 
offers a greater opportunity to reduce the number of control 
pins, e.g., by attempting to synchronize operations, allowing 
multiple valves to share the same control.  

We propose a new scheduling technique, which produces a 
schedule such that the number of edges in the coloring graph 
G is minimized and the application deadline is satisfied. By 
minimizing the number of edges in the graph G during sched-

uling, we are able to significantly reduce the number of con-
trol pins compared to the related work.  

The proposed technique is based on a List Scheduling (LS) 
heuristic [21]. LS heuristics use a sorted priority list, Lready, 
containing the operations ready to be scheduled. An operation 
Oi is ready if all the predecessor operations have finished 
executing and all the incoming fluids are received. We use the 
“urgency” priority function [21] to sort Lready. However, com-
pared to the original LS, we do not immediately schedule a 
ready operation Oi. Let us assume that we would schedule Oi 
at time ti. Instead, before scheduling Oi, we incrementally 
delay Oi with on time step, i.e., ti + 1, ti + 2, etc., up to ALAPi, 
where ALAPi  is the as-late-as-possible start of Oi such that the 
deadline D of the biochemical application is not exceeded. The 
value of ALAPi for each operation is determined by perform-
ing ALAP scheduling [21] on the application graph. For each 
increment ti + j, we create a new coloring graph G, as dis-
cussed in Section IV.B. We record that increment j, which 
corresponds to the minimum number of edges in G. We then 
schedule Oi at time step ti + j, with j as determined earlier.  

Let us consider the example in Fig. 5, where we have al-
ready scheduled operation OB on Mixer2 as depicted in Fig. 5a, 
and we need to decide how to schedule operation OA on Mix-
er1. Let us assume that Mixer1 is controlled by 9 valves, v2 to 
v10, and Mixer2 by valves v28 to v36, see Fig. 2a. If we schedule 
operation OA at the earliest time when it is ready for execution, 
such as in Fig. 5a, we will need 18 control signals to operate 
the two mixers. However, if we delay the execution of OA to 
the time depicted in Fig. 5b, we overlap the execution of the 
two mixers, such that their valves operate synchronously, and 
thus can share the control signals. In this case, only 9 control 
signals are needed to operate the two mixers. 

Please note that this is a heuristic algorithm, i.e., it is not 

 

(a) No valve sharing: 18 control pins are needed to run the 2 mixers 

 

(b) Overlapped operation: 9 control pins are needed to run the 2 mixers 
 

Fig. 5. Delaying operations to maximize overlap 

 

(a) Expensive, bulky and power hungry on-chip control 

 

(b) Part of the off-chip control has been moved on-chip 

 
(c) 8:16 on-chip muliplexer for on-chip control [23] 

Fig. 6. Trade-off between off- and on-chip control 
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guaranteed to lead to the minimum number of control pins. 
We are using the number of edges in G as a “proxy cost func-
tion” instead of actually finding out the number of “colors” in 
the graph G, which would be too time consuming to do within 
LS. However, for our example, we are able to reduce the num-
ber of control pins from 89 (which cannot be implemented on 
the MI chip) to a final number of 12 (after all the steps in the 
strategy), less than the 30 available pins, which shows that the 
heuristic is able to reduce the number of control pins during 
the scheduling step. 

IV.  CONCLUSIONS AND FUTURE WORK 
In this paper we have addressed flow-based biochips where 

the building block is a microvalve, which is used to build more 
complex components. We have proposed a general strategy to 
minimize the number of control pins needed to run a biochem-
ical application on a given biochip architecture. The strategy 
consists of 5 steps, (1) compilation, (2) control synthesis, (3) 
on/off-chip control trade-off, (4) valve minimization and (5) 
physical synthesis. The focus of the paper was on the compila-
tion step, which aims at minimizing the number of signals 
needed to control the microvalves, by maximizing the signal 
sharing among the microvalves. We have proposed a List 
Scheduling-based heuristic for the pin count-aware compila-
tion (step 1), and we have discussed the existing solutions for 
steps 2 to 5. The proposed methodology was validated on a 
case study implemented using a microfluidic control system 
from MI. As future work, it would be interesting to propose a 
better solution to the compilation task, which uses as cost 
function the number of control pins, and not the number of 
edges in the control graph. This could be achieved also by 
integrating steps (1) compilation and (4) valve minimization 
into a single optimization problem. In addition, it would be 
interesting to investigate solutions to the on/off-chip control 
trade-off, by deciding automatically on the part of the off-chip 
control that should be moved on-chip and synthesizing the 
required on-chip circuitry and physical layout. 
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