
Real-Time Syst (2008) 39: 205–235
DOI 10.1007/s11241-007-9040-3

Timing analysis of the FlexRay communication protocol

Traian Pop · Paul Pop · Petru Eles · Zebo Peng ·
Alexandru Andrei

Published online: 20 October 2007
© Springer Science+Business Media, LLC 2007

Abstract FlexRay is a communication protocol heavily promoted on the market by
a large group of car manufacturers and automotive electronics suppliers. However,
before it can be successfully used for safety-critical applications that require pre-
dictability, timing analysis techniques are necessary for providing bounds for the
message communication times. In this paper, we propose techniques for determin-
ing the timing properties of messages transmitted in both the static and the dynamic
segments of a FlexRay communication cycle. The analysis techniques for messages
are integrated in the context of a holistic schedulability analysis that computes the
worst-case response times of all the tasks and messages in the system. We have eval-
uated the proposed analysis techniques using extensive experiments. We also present
and evaluate three optimisation algorithms that can be used to improve the schedul-
ability of a system that uses FlexRay.

Keywords Real-time analysis · Distributed embedded systems · FlexRay

1 Introduction

Many safety-critical applications, following physical, modularity or safety con-
straints, are implemented using distributed architectures composed of several dif-
ferent types of hardware units (called nodes), interconnected in a network. For such
systems, the communication between functions implemented on different nodes has
an important impact on the overall system properties, such as performance, cost and
maintainability.

T. Pop (�) · P. Pop · P. Eles · Z. Peng · A. Andrei
Linköping University, 58183 Linköping, Sweden
e-mail: trapo@ida.liu.se

206 Real-Time Syst (2008) 39: 205–235

There are several communication protocols for real-time networks. Among the
protocols that have been proposed for in-vehicle communication, only the Con-
troller Area Network (CAN) (R. Bosch GmbH 1991), the Local Interconnection Net-
work (LIN) (Local Interconnect Network Protocol Specification 2005), and SAE’s
J1850 (SAE 1994) are currently in use on a large scale (Navet et al. 2005). More-
over, only a few of the proposed protocols are suitable for safety-critical applications
where predictability is mandatory (Rushby 2001).

Communication activities can be triggered either dynamically, in response to an
event (event-driven), or statically, at predetermined moments in time (time-driven).
Therefore, on one hand, there are protocols that schedule the messages statically
based on the progression of time, such as the SAFEbus (Hoyme and Driscoll 1992),
SPIDER (Miner 2000), TTCAN (International Organization for Standardization
2002), and Time-Triggered Protocol (TTP) (Kopetz and Bauer 2003). The main draw-
back of such protocols is their lack of flexibility. On the other hand, there are com-
munication protocols where message scheduling is performed dynamically, such as
Byteflight (Berwanger et al. 2000) introduced by BMW for automotive applications,
CAN (R. Bosch GmbH 1991), LonWorks (Echelon 2005) and Profibus (Profibus In-
ternational 2005).

A large consortium of automotive manufacturers and suppliers has recently
proposed a hybrid type of protocol, namely the FlexRay communication proto-
col (FlexRay 2005). FlexRay allows the sharing of the bus among event-driven (ET)
and time-driven (TT) messages, thus offering the advantages of both worlds. FlexRay
will possibly become the de facto standard for in-vehicle communications. However,
before it can be successfully deployed in applications that require predictability, tim-
ing analysis techniques are necessary to provide bounds for the message communi-
cation times (Navet et al. 2005).

FlexRay is composed of static (ST) and dynamic (DYN) segments, which are
arranged to form a bus cycle that is repeated periodically. The ST segment is similar
to TTP, and employs a generalized time-division multiple-access (GTDMA) scheme.
The DYN segment of the FlexRay protocol is similar to Byteflight and uses a flexible
TDMA (FTDMA) bus access scheme.

Although researchers have proposed analysis techniques for dynamic protocols
such as CAN (Tindell et al. 1995), TDMA (Tindell and Clark 1994), ATM (Er-
medahl et al. 1997), Token Ring protocol (Strosnider and Marchok 1989), FDDI
protocol (Agrawal et al. 1994) and TTP (Pop et al. 2004), none of these analyses
is applicable to the DYN segment in FlexRay. In Ding et al. (2005), the authors con-
sider the case of a hard real-time application implemented on a FlexRay bus. How-
ever, in their discussion they restrict themselves exclusively to the static segment,
which means that, in fact, only the classical problem of communication scheduling
over a TDMA bus (Pop et al. 2004; Hamann and Ernst 2005) is considered. The
performance analysis of the Byteflight protocol, which is similar to the DYN seg-
ment of FlexRay, is discussed in Cena and Valenzano (2004). The authors, however,
assume a very restrictive “quasi-TDMA” transmission scheme for time-critical mes-
sages, which basically means that the DYN segment would behave as an ST segment
(similar to TDMA) in order to guarantee timeliness.

In this paper we present an approach to timing analysis of applications commu-
nicating over a FlexRay bus, taking into consideration the specific aspects of this

Real-Time Syst (2008) 39: 205–235 207

protocol, including the DYN segment. More exactly, we propose techniques for de-
termining the timing properties of messages transmitted in the static and the dynamic
segments of a FlexRay communication cycle. We first briefly present a static cyclic
scheduling technique for TT messages transmitted in the ST segment, which extends
our previous work on the TTP (Pop et al. 2000). Then, we develop a worst-case re-
sponse time analysis for ET messages sent using the DYN segment, thus providing
predictability for messages transmitted in this segment. The analysis techniques for
messages are integrated in the context of a holistic schedulability analysis algorithm
that computes the worst-case response times of all the tasks and messages in the
system.

Such an analysis, while being able to bound the message transmission times on
both the ST and DYN segments, represents the first step towards enabling the use
of this protocol in a systematic way for time critical applications. The second step
towards an efficient use of FlexRay is taken in Sect. 6 of this paper, where we propose
several optimisation techniques that consider the particular features of an application
during the process of finding a FlexRay bus configuration that can guarantee that all
time constraints are satisfied.

This paper is organized in seven sections. Section 2 presents the system architec-
ture considered, and Sect. 3 introduces the FlexRay media access control. In Sect. 4
we present the application model that we use. The main part of the paper is concen-
trated in Sect. 5, where we present our timing analysis for distributed real-time sys-
tems that use the FlexRay protocol, together with the experimental results we have
run in order to determine the efficiency of our approaches. In the same section we
extend the analysis to capture the independent usage of the two FlexRay channels.
Section 6 shows how system schedulability is improved as a result of careful bus
access optimisation. The last section presents our conclusions.

2 System model

We consider architectures consisting of nodes connected by one FlexRay commu-
nication channel1 (see Fig. 1a). Each processing node connected to a FlexRay bus
is composed of two main components: a CPU and a communication controller (see
Fig. 2a) that are interconnected through a two-way controller-host interface (CHI).
The controller runs independently of the node’s CPU and implements the FlexRay
protocol services.

For the systems we are studying, we have designed a software architecture which
runs on the CPU of each node. The main component of the software architecture is a
real-time kernel that contains two schedulers, for static cyclic scheduling (SCS) and
fixed priority scheduling (FPS), respectively2 (see Fig. 1b).

When several tasks are ready on a node, the task with the highest priority is acti-
vated, and preempts the other tasks. Let us consider the example in Fig. 1b, where we
have six tasks sharing the same node. Tasks τ1 and τ6 are scheduled using SCS, while

1FlexRay is a dual-channel bus, aspect discussed in Sect. 5.3.
2EDF can also be added, as presented by us in Pop et al. (2005b).

208 Real-Time Syst (2008) 39: 205–235

Fig. 1 System architecture example

the rest are scheduled with FPS. The priorities of the FPS tasks are indicated in the
figure. The arrival time of a task is depicted with an upwards pointing arrow. Under
these assumptions, Fig. 1b presents the worst-case response times of each task. SCS
tasks are non preemptable and their start time is off-line fixed in the schedule table
(they also have the highest priority, denoted with priority level “0” in the figure). FPS
tasks can only be executed in the slack of the SCS schedule table.

FPS tasks are scheduled based on priorities. Thus, a higher priority task such as
τ3 preempts a lower priority task such as τ4. SCS activities are triggered based on a
local clock in each processing node. The synchronization of local clocks throughout
the system is provided by the communication protocol (FlexRay 2005).

3 The FlexRay communication protocol

In this section we will describe how messages generated by the CPU reach the
communication controller and how they are transmitted on the bus. Let us con-
sider the example in Fig. 2 where we have three nodes, N1 to N3 sending messages
ma,mb, . . . ,mh using a FlexRay bus.

In FlexRay, the communication takes place in periodic cycles (Fig. 2b depicts
two cycles of length Tbus). Each cycle contains two time intervals with different bus
access policies: an ST segment and a DYN segment.3 The ST and DYN segment
lengths can differ, but are fixed over the cycles. We denote with STbus and DYNbus

the length of these segments. Both the ST and DYN segments are composed of sev-
eral slots. In the ST segment, the slots number is fixed, and the slots have constant
and equal length, regardless of whether ST messages are sent or not over the bus in

3The FlexRay bus cycle contains also a symbol window and a network idle time, but their size does not
affect the equations in our analysis. For simplicity, they will be ignored during the examples throughout
the paper.

Real-Time Syst (2008) 39: 205–235 209

Fig. 2 FlexRay communication cycle example

that cycle. The length of an ST slot is specified by the FlexRay global configuration
parameter gdStaticSlot (FlexRay 2005). In Fig. 2 there are three static slots for the
ST segment.

The length of the DYN segment is specified in number of “minislots”, and is equal
to gNumberOfMinislots. Thus, during the DYN segment, if no message is to be sent
during a certain slot, then that slot will have a very small length (equal to the length
gdMinislot of a so called minislot), otherwise the DYN slot will have a length equal
with the number of minislots needed for transmitting the whole message (FlexRay
2005). This can be seen in Fig. 2b, where DYN slot 2 has 3 minislots (4, 5, and 6) in
the first bus cycle, when message me is transmitted, and one minislot (denoted with
“MS” and corresponding to the minislot counter 2) in the second bus cycle when no
message is sent.

During any slot (ST or DYN), only one node is allowed to send on the bus, and
that is the node which holds the message with the frame identifier (FrameID) equal
to the current value of the slot counter. There are two slot counters, corresponding to
the ST and DYN segments, respectively. The assignment of frame identifiers to nodes
is static and decided offline, during the design phase. Each node that sends messages
has one or more ST and/or DYN slots associated to it. The bus conflicts are solved
by allocating offline one slot to at most one node, thus making it impossible for two
nodes to send during the same ST or DYN slot.

In Fig. 2, node N1 has been allocated ST slot 2 and DYN slot 3, N2 transmits
through ST slots 1 and 3 and DYN slots 2 and 4, while node N3 has DYN slots 1
and 5. For each of these slots, the CHI reserves a buffer that can be written by the

210 Real-Time Syst (2008) 39: 205–235

CPU and read by the communication controller (these buffers are read by the commu-
nication controller at the beginning of each slot, in order to prepare the transmission
of frames). The associated buffers in the CHI are depicted in Fig. 2a. We denote with
DYNSlotsNp the number of dynamic slots associated to a node Np (this means that
for N2 in Fig. 2, DYNSlotsN2 has value 2).

We use different approaches for ST and DYN messages to decide which messages
are transmitted during the allocated slots. For ST messages, we consider that the CPU
in each node holds a schedule table with the transmission times. When the time comes
for an ST message to be transmitted, the CPU will place that message in its associated
ST buffer of the CHI. For example, ST message mb sent from node N1 has an entry
“2/2” in the schedule table specifying that it should be sent in the second slot of the
second ST cycle.

For the DYN messages, we assume that the designer specifies their FrameID. For
example, DYN message me has the frame identifier “2”. While nodes must use dis-
tinct FrameIDs (and consequently distinct DYN slots) in order to avoid bus conflicts,
we allow for a node to send different messages using the same DYN FrameID.4 For
example, messages mg and mf on node N2 have both FrameID 4. If two or more
messages with the same frame identifier are ready to be sent in the same bus cycle, a
priority scheme is used to decide which message will be sent first. Each DYN mes-
sage mi has associated a priority prioritymi

. Messages with the same FrameID will
be placed in a local output queue ordered based on their priorities. The message form
the head of the priority queue is sent in the current bus cycle. For example, message
mf will be sent before mg because it has a higher priority.

At the beginning of each communication cycle, the communication controller of a
node resets the slot and minislot counters. At the beginning of each communication
slot, the controller verifies if there are messages ready for transmission (present in the
CHI send buffers) and packs them into frames.5 In the example in Fig. 2 we assume
that all messages are ready for transmission before the first bus cycle.

Messages selected and packed into ST frames will be transmitted during the bus
cycle that is about to start according to the schedule table. For example, in Fig. 2,
messages ma and mc are placed into the associated ST buffers in the CHI in order
to be transmitted in the first bus cycle. However, messages selected and packed into
DYN frames will be transmitted during the DYN segment of the bus cycle only if
there is enough time until the end of the DYN segment. Such a situation is verified by
comparing if, in the moment the DYN slot counter reaches the value of the FrameID
for that message, the value of the minislot counter is smaller than a given value pLat-
estTx. The value pLatestTx is fixed for each node during the design phase, depending
on the size of the largest DYN frame that node will have to send during run-time. For
example, in Fig. 2, message mh is ready for transmission before the first bus cycle
starts, but, after message mf is transmitted, there is not enough room left in the DYN
segment. This will delay the transmission of mh for the next bus cycle.

4This assumption is not part of the FlexRay specification. If messages are not sharing FrameIDs, this is
handled implicitly as a particular case of our analysis.
5In this paper we do not address frame-packing (Pop et al. 2005a), and thus assume that one message is
sent per frame.

Real-Time Syst (2008) 39: 205–235 211

4 Application model

We model an application A as a set of directed, acyclic, polar graphs Gi (Vi ,Ei) ∈ A.
A node τij ∈ Vi represents the j th task or message in Gi . An edge eijk ∈ Ei from τij

to τik indicates that the output of τij is the input of τik . A task becomes ready after
all its inputs have arrived and it issues its outputs when it terminates. A message will
become ready after its sender task has finished, and becomes available for the receiver
task after its transmission has ended. The communication time between tasks mapped
on the same processor is considered to be part of the task worst-case execution time
and is not modeled explicitly. Communication between tasks mapped to different
processors is performed by message passing over the bus. Such message passing is
modeled as a communication task inserted on the arc connecting the sender and the
receiver task.

We consider that the scheduling policy for each task is known (either SCS or FPS),
and we also know which messages are ST and which are DYN. For a task τij ∈ Vi ,
Nodeτij

is the node to which τij is assigned for execution. When executed on Nodeτij
,

a task τij has a known worst-case execution time Cτij
. We also consider that the size

of each message m is given, which can be directly converted into communication
time Cm on the particular bus, knowing the speed of the bus and the size of the frame
that stores the message:

Cm = Frame_size(m)/bus_speed. (1)

Tasks and messages activated based on events also have a priority, priorityτij
. All

tasks and messages belonging to a task graph Gi have the same period Tτij
= TGi

which is the period of the process graph. A deadline DGi
is imposed on each task

graph Gi . In addition, tasks can have associated individual release times and dead-
lines.

5 Timing analysis

Given a distributed system based on FlexRay, as described in the previous two sec-
tions, the tasks and messages have to be scheduled. For the SCS tasks and ST mes-
sages, this means building the schedule tables, while for the FPS tasks and DYN
messages we have to determine their worst-case response times.

The problem of finding a schedulable system has to consider two aspects:

1. When performing the schedulability analysis for the FPS tasks and DYN mes-
sages, one has to take into consideration the interference from the SCS activities.

2. Among the possible correct schedules for SCS activities, it is important to build
one which favours as much as possible the schedulability of FPS activities.

Figure 3 presents the global scheduling and analysis algorithm, in which the main
loop consists of a list-scheduling based algorithm (Coffman and Graham 1972) that
iteratively builds the static schedule table with start times for SCS tasks and ST mes-
sages.

212 Real-Time Syst (2008) 39: 205–235

GlobalSchedulingAlgorithm()
1 while TT_ready_list is not empty
2 select τij from TT_ready_list
3 if τij is a SCS task then
4 schedule_TT_task(τij, Nodeτij)

5 else // τij is a ST message
6 schedule_ST_msg(τij, Nodeτij)

7 end if
8 update TT_ready_list
9 end while

end StaticScheduling
schedule_TT_task(τij, Nodeτij)

10 find first available time moment ts after ASAPτij

on Nodeτij

11 schedule τij after ts on Nodeτij , so that holistic analysis

produces minimal worst-case response times
for FPS tasks and DYN messages

12 update ASAP for all τij successors
end schedule_TT_task
schedule_ST_msg(τij, Nodeτij)

13 find first ST slot(Nodeτij) available after ASAPτij

14 schedule τij in that ST slot
15 update ASAP for all τij successors

end schedule_ST_msg

Fig. 3 Global scheduling algorithm

A ready list (TT_ready_list) contains all SCS tasks and ST messages which are
ready to be scheduled (they have no predecessors or all their predecessors have al-
ready been scheduled). From the ready list, tasks and messages are extracted one by
one (Fig. 3, line 2) to be scheduled on the processor they are mapped to (line 4), or
into a static bus-slot associated to that processor on which the sender of the message
is executed (line 6), respectively. The priority function which is used to select among
ready tasks and messages is a critical path metric, modified by us for the particular
goal of scheduling tasks mapped on distributed systems (Pop et al. 2000). Let us con-
sider a particular task τij selected from the ready list to be scheduled. We consider
that ASAPτij

is the earliest time moment which satisfies the condition that all pre-
ceding activities (tasks or messages) of τij are finished (line 10). With only the SCS
tasks in the system, the straightforward solution would be to schedule τij at the first
time moment after ASAPτij

when Nodeτij
is free. Similarly, an ST message will be

scheduled in the first available ST slot associated with the node that runs the sender
task for that message.

As presented by us in Pop et al. (2003), when scheduling SCS tasks, one has to
take into account the interference they produce on FPS tasks. The function sched-
ule_TT_task in Fig. 3 places a SCS task in the static schedule in such a way that the
increase of worst-case response times for FPS tasks is minimized. Such an increase is
determined by comparing the worst-case response times of FPS tasks obtained with
our holistic schedulability analysis before and after inserting the new SCS task in the
schedule (Pop et al. 2003).

The next subsection presents our solution for computing the worst case response
times of DYN messages, while in Sect. 5.2 we will integrate this solution into a holis-

Real-Time Syst (2008) 39: 205–235 213

tic schedulability analysis that determines the timing properties of both FPS tasks and
DYN messages (which is called in line 11, of schedule_TT_task presented in Fig. 3).

5.1 Schedulability analysis of DYN messages

The worst case response time Rm of a DYN message m is given by the following
equation:

Rm(t) = σm + wm(t) + Cm, (2)

where Cm is the message communication time (see Sect. 4), σm is the longest delay
suffered during one bus cycle if the message is generated by its sender task after
its slot has passed, and wm is the worst case delay caused by the transmission of ST
frames and higher priority DYN messages during a given time interval t . For example,
in Fig. 4, we consider that a message m is supposed to be transmitted in the 3rd DYN
slot of the bus cycle. The figure presents the case when message m appears during the
first bus cycle after the 3rd DYN slot has passed, therefore the message has to wait
σm until the next bus cycle starts. In the second bus cycle, the message has to wait for
the ST segment and for the first two DYN slots to finish, delay denoted with wm (that
also contains the transmission of a message m′ that uses the second DYN slot).

The communication controller decides what message is to be sent on the bus in
a certain communication slot at the beginning of that slot. As a consequence, in the
worst case, a DYN message m is generated by its sender task immediately after the
slot with the FrameIDm has started, forcing message m to wait until the next bus
cycle starts in order to really start competing for the bus. In conclusion, in the worst
case, the delay σm has the value:

σm = Tbus − (STbus + (FrameIDm − 1) × gdMinislot), (3)

where STbus is the length of the ST segment.
What is now left to be determined is the value wm corresponding to the maximum

amount of delay on the bus that can be produced by interference from ST frames and
DYN messages. We start from the observations that the transmission of a ready DYN
message m during the DYN slot FrameIDm can be delayed because of the following
causes:

• Local messages with higher priority, that use the same frame identifier as m. We
will denote this set of higher priority local messages with hp(m). For example, in
Fig. 2a, messages mg and mf share FrameID 4, thus hp(mg) = {mf }.

Fig. 4 Response time of a DYN message

214 Real-Time Syst (2008) 39: 205–235

• Any messages in the system that can use DYN slots with lower frame identifiers
than the one used by m. We will denote this set of messages having lower frame
identifiers with lf (m). In Fig. 2a, lf (mg) = {md,me}.

• Unused DYN slots with frame identifiers lower than the one used for sending m

(though such slots are unused, each of them still delays the transmission of m

for an interval of time equal with the length gdMinislot of one minislot); we will
denote the set of such minislots with ms(m). Thus, in the example in Fig. 2b,
ms(mg) = {1,2,3}, and ms(mf) = {3}.
Determining the interference of DYN messages in FlexRay is complicated by sev-

eral factors. Let us consider the example in Fig. 5, where we have two nodes, N1 (with
FrameIDs 1 and 3) and N2 (with FrameID 2), and three messages m1 to m3. N1 sends
m1 and m3, and N2 sends message m2. Messages m1 and m2 have FrameIDs 1 and 2,
respectively. We consider two situations: Fig. 5a, where m3 has a separate FrameID 3,
and Fig. 5b, where m3 shares the same FrameID 1 with m1. The values of pLatestTx
for each node are depicted in the figure.6

In Fig. 5a, message m2, that has a lower FrameID than m3, cannot be sent im-
mediately after message m1, because the value of the minislot counter has exceeded
the value pLatestTxm2

when the value of the DYN slot counter becomes equal to 2
(hence, m2 does not fit in this DYN cycle). As a consequence, the transmission of m2
will be delayed for the next bus cycle. However, since in the moment when the DYN
slot counter becomes 3 the minislot counter does not exceed the value pLatestTxm3

,
message m3 will fit in the first bus cycle. Thus, a message (m3 in our case) can be
sent before another message with a lower FrameID(m2). Such situations must be
accounted for when building the worst-case scenario.

In Fig. 5b, message m3 shares the same FrameID 1 with m1 but we consider
that it has a lower priority, thus hp(m3) = {m1}. In this case, m3 is sent in the
first DYN slot of the second bus cycle (the first slot of the first cycle is occupied
with m1) and thus will delay the transmission of m2. In this scenario, we notice
that assigning a lower frame identifier to a message does not necessarily reduce the
worst-case response time of that message (compare to the situation in Fig. 5a, where
m3 has FrameID = 3).

We next focus on determining the delay wm(t) in (2). The delay produced by all
the elements in hp(m), lf (m) and ms(m) can extend to one or more bus cycles:

wm(t) = BusCyclesm(t) × Tbus + w′
m(t), (4)

where BusCyclesm(t) is the number of bus periods for which the transmission of m is
not possible because transmission of messages from hp(m) and lf (m) and because of
minislots in ms(m). The delay w′

m(t) denotes now the time that passes, in the last bus
cycle, until m is sent, and is measured from the beginning of the bus cycle in which
message m is sent until the actual transmission of m starts. For example, in Fig. 5b,
BusCyclesm2 = 1 and w′

m2
(t) = STbus +Cm3 . Note that both these terms are functions

of time, computed over an analyzed interval t . This means that when computing them
we have to take into consideration all the elements in hp(m), lp(m) and ms(m) that

6We use pLatestTxm to denote pLatestTxN of the node N sending message m.

Real-Time Syst (2008) 39: 205–235 215

F
ig

.5
T

ra
ns

m
is

si
on

sc
en

ar
io

s
fo

r
D

Y
N

m
es

sa
ge

s

216 Real-Time Syst (2008) 39: 205–235

can appear during such a given time interval t . Thus, we will consider the multiset
hp(m, t) containing all the occurrences over time interval t of elements in hp(m).
The number of such occurrences for a message l ∈ hp(m) is equal to: �(Jl + t)/Tl�,
where Tl is the period of the message l and Jl is its worst-case jitter (such a jitter is
computed as the difference between the worst-case and best-case response times of
its sender task s: Jl = Rs − Rb

s (Palencia and Gonzaléz Harbour 1998)). Similarly,
lf (m, t) and ms(m, t) consider all the occurrences over t of elements in lf (m) and
ms(m) respectively.

The next two sections (5.1.1 and 5.1.2) present the optimal (i.e., exact) solutions
for determining the values for BusCyclesm(t) and w′

m(t), respectively. These, how-
ever, can be intractable for larger problem sizes. Hence, in Sects. 5.1.3 and 5.1.4 we
propose heuristics that quickly compute upper bounds (i.e., pessimistic) values for
these terms. Once for any given time interval t we know how to obtain the values
BusCycles(t) and w′

m(t), determining the worst case response time for a message m

becomes an iterative process that computes Rk
m(Rk−1

m), starting from R0
m = Cm and

finishing when Rk
m = Rk−1

m .

5.1.1 Optimal solution for BusCyclesm

We start with the observation that a message m with FrameIDm cannot be sent by a
node Np during a bus cycle b if at least one of the following conditions is fulfilled:

1. There is too much interference from elements in lf (m) and ms(m), so that the
minislot counter exceeds the value pLatestTxNp , making it impossible for Np to
start the transmission of m during b. For example in Fig. 5a, message m2 cannot
be sent during the first bus cycle because the transmission of a higher priority
message m1 pushes the minislot counter over the value pLatestTxN2 .

2. The DYN slot FrameIDm in b is used by another local higher priority message
from hp(m). For example, in Fig. 5b, messages m1 and m3 share the same frame
identifier and hp(m3) = {m1}. Therefore, the transmission of m3 in the first bus
cycle is not possible.

Whenever a bus cycle satisfies at least one of these two conditions, it will be called
“filled”, since it is unusable for the transmission of the message m under analysis. In
the worst case, the value BusCyclesm(t) is then the maximum number of bus cycles
that can be filled using elements from hp(m), lf (m) and ms(m).

We start with the observation that each of the two conditions above, when true,
can prevent the message m for being transmitted during the current bus cycle. For
example, a bus cycle in which a message from hp(m) is ready for transmission will be
completely unusable for the transmission of m, regardless if there are any messages
from lf (m). Similarly, if the messages from lf (m) are long enough so that the DYN
slot counter reaches FrameIDm after the minislot counter exceeds pLatestTxm, then
that bus cycle will be unusable for the transmission of m, regardless of the fact that
there are messages from hp(m). Since messages in hp(m, t) and lf (m, t) can become
ready at any point during the analyzed interval t , this means that in the worst case,
each filled bus cycle will contain either only messages from lf (m, t), or only one
message from hp(m, t). For example, considering the same setup presented in Fig. 2,

Real-Time Syst (2008) 39: 205–235 217

Fig. 6 Worst case scenario for DYN message mg

the worst-case scenario for message mg is when message mf from hp(mg) is ready
at the beginning of the first bus cycle and messages md and me from lf (mg) become
ready just before the start of their slots in the second bus cycle (see Fig. 6 for the
worst-case scenario of mg).

This means that, in the worst case, the delay produced by elements in lf (m, t) and
ms(m, t) adds up to that produced by messages in hp(m, t):

BusCyclesm(t) = BusCyclesm(hp(m, t)) + BusCyclesm(lf (m, t),ms(m, t)), (5)

where we denote with BusCyclesm(hp(m, t)) the number of bus cycles in which
the delay of the message m under analysis is produced by messages in hp(m, t)

(corresponding to the second case presented above); similarly, BusCyclesm(lf (m, t),
ms(m, t)) is the number of “filled” bus cycles in which the transmission of message m

is delayed by elements in lf (m, t) and ms(m, t) (corresponding to the first condition
presented above).

Since each message in hp(m, t) delays the transmission of m with one bus cycle,
the occurrences over time interval t of messages in hp(m) will produce a delay equal
to the total number of elements in hp(m, t):

BusCyclesm(hp(m, t)) = |hp(m, t)|. (6)

The problem that remains to be solved is to determine how many bus cycles can
be “filled” according to the first condition presented above using only elements in
lf (m, t) and ms(m, t). As we will discuss later, a simplified version of this problem is
equivalent to bin covering, which belongs to the family of NP-hard problems (Labbe
et al. 1995). To obtain the optimal solution, we have modelled the problem of com-
puting BusCyclesm(lf (m, t),ms(m, t)) as an integer linear program (ILP). The model
starts from the observation that, considering we have n elements in lf (m, t), there are
at most n bus cycles that can be filled. For each such bus cycle we create a binary
variable yi=1...n that is set to 1 when the ith bus cycle is filled with elements from
lf (m, t) and ms(m, t), and to 0 if it is not filled (i.e., it can allow the transmission of
message m under analysis).

The goal of the ILP problem is to maximize the number of filled bus cycles (i.e.,
to calculate the worst-case):

BusCyclesm(lf (m, t),ms(m, t)) =
∑

i=1...n

yi, (7)

218 Real-Time Syst (2008) 39: 205–235

subject to a set of conditions that set the variables yi to 1 or 0. Bellow we de-
scribe these conditions, which capture how messages in lf (m, t) and the minislots
in ms(m, t) are sent by FlexRay in these bus cycles.

We allocate a binary variable xijk that is set to 1 if a message mk ∈ lf (m, t) (k =
1 . . . n) is sent during the ith bus cycle, using the FrameID j = 1 . . .FrameIDm. The
load transmitted in each bus cycle can be expressed as:

Loadi =
∑

mk∈lf (m,t)

j=1...FrameIDm

(xijk × Ck + (1 − xijk) × gdMinislot), (8)

where Ck are the communication times (1) of the messages mk ∈ lf (m, t). Each term
of the sum in (8) captures the particularities of FlexRay DYN frames: if a message
k is transmitted in cycle i with frame identifier j , then xijk = 1 and the length of
the frame being transmitted is equal with the length of the message k (thus the term
xijk × Ck); if xijk is 0 for all j and k, then there is no actual transmission on the bus
in that DYN slot, but there is still some delay due to the empty minislot of length
gdMinislot that has to pass in order to increase the value of the DYN slot counter
(thus the second term).

The condition that sets each variable yi to 1 whenever possible is:

Loadi > pLatestTxNp
× gdMinislot × yi, (9)

where pLatestTxNp
is the last minislot which allows the start of transmission from

node Np which generates the message m under analysis. Such a condition enforces
that a variable yi cannot be set to 1 unless the total amount of interference from
lf (m, t) and ms(m, t) in cycle i exceeds pLatestTxNp

minislots (only then message
m is not allowed to be transmitted and, thus, bus cycle i is “filled”).

In addition to this condition we have to make sure that

• Each message mk ∈ lf (m, t) is sent in only one cycle i:

∑

i=1...n
j=1...FrameIDm

xijk ≤ 1, ∀mk ∈ lf (m, t); (10)

• Each frame identifier is used only once in a bus cycle:

∑

k=1...n

xijk ≤ 1, ∀i, j ; (11)

• Each message mk ∈ lf (m, t) is transmitted using its frame identifier:

xijk ≤ Framejk, ∀i, j, k, (12)

where Framejk is a binary constant with value 1 if message mk ∈ lf (m, t) has a
frame identifier FrameIDmk

= j (otherwise, Framejk is 0).

Real-Time Syst (2008) 39: 205–235 219

Finally, we have to enforce that in every cycle i no message mk will start trans-
mission after its associated pLatestTxmk . If we have xijk = 1, then we have to add the
condition that the total amount of transmission that takes place before DYN slot j

has to finish no later than pLatestTxk :

∑

mq∈lf (m,t)

p=1...j−1

(xipq × Cq + (1 − xipq) × gdMinislot) ≤ pLatestTxk × gdMinislot. (13)

The conditions (8–13) together with the maximization goal expressed in (7) define
the ILP program that will determine the maximum worst-case number of bus cycles
that can be filled with elements in lf (m, t) and ms(m, t). By adding this result to the
value determined in (6), we obtain the total number BusCyclesm(t) (5).

5.1.2 Optimal solution for w′
m

In the worst case, the elements in lf (m, t) and ms(m, t) will delay the message un-
der analysis for BusCyclesm(lf (m, t),ms(m, t)) bus periods. In addition, they will
delay the actual transmission of m during the DYN segment of the bus period
BusCyclesm + 1, by an amount w′

m.
The problem of determining the value for w′

m is defined as follows: given the mul-
tisets lf (m, t) and ms(m, t) and the maximum number BusCyclesm(lf (m, t),ms(m, t))

that they can fill, what is the maximum possible load (8) in the first unfilled bus cycle
(i.e. the bus cycle that does not satisfy the condition in (9)).

In order to determine the exact value of w′
m in the worst case, one can use the

same ILP system defined in the previous section for computing BusCyclesm(lf (m, t),

ms(m, t)), with the following modifications:

• Since we know the value BusCyclesm (which is determined solving the ILP formu-
lation presented in the previous section), we add conditions that force the values
yi = 1 for all i = 1 . . .BusCyclesm, and yi = 0 for all i = BusCyclesm + 1 . . . n; in
this way, the messages will be packed so that the bus cycles from 1 to BusCyclesm

will be filled (i.e. they satisfy condition (9)), while the remaining bus cycles will
be unfilled.

• Using the same set of conditions (8–13) for filling the first BusCyclesm cycles, the
goal described in (7) is replaced with the following one, expressing that the load
of the cycle number BusCyclesm + 1 has to be maximized (LoadL is expressed as
in (8)):

maximize LoadL, for L = BusCyclesm + 1. (14)

5.1.3 Heuristic solution for BusCyclesm

In the previous subsections, we have presented solutions for determining the optimal
values for BusCyclesm and w′

m. As we will see later in Sect. 5.4, such solutions are
unacceptable in practice due to their long computation times inherent to such high
complexity algorithms. For this reason, we propose heuristic solutions, with lower

220 Real-Time Syst (2008) 39: 205–235

complexity, that need extremely short computation times, while at the same time
producing results close to the ones offered by the optimal implementations.

We start by presenting a heuristic solution for computing the value BusCyclesm.
We first make the observation that in a bus cycle where a message m is sent by a node
Np during DYN slot FrameIDm, in the worst case there will be at most FrameIDm −1
unused minislots before m is transmitted (in Fig. 5a, the transmission of m2 can be
preceded by at most one unused minislot).

Instead of considering the multiset ms(m, t) to calculate the actual number of un-
used minislots before message m, as we did for the exact solution, we will consider
the worst-case number of minislots. The delay produced by the minislots will be con-
sidered as part of the message communication time as follows (see also (1)):

C′
m = (FrameIDm − 1) × gdMinislot + Cm. (15)

Since the duration of one minislot (gdMinislot) is an order of magnitude smaller
compared to the length of a cycle, this approximation will not introduce any signifi-
cant pessimism.

The problem left to solve now is how many bus cycles can be filled with the
elements from a multiset lf ′(m, t), that consists of all the messages in lf (m, t) for
which we consider the communication times computed using (15).

If we ignore the conditions expressed in (11–13), then determining
BusCyclesm(lf ′(m, t)) becomes a bin covering problem (Labbe et al. 1995). Bin cov-
ering tries to maximize the number of bins that can be filled to a fixed minimum
capacity using a given set of items with specified weights. In our scenario, the mes-
sages in lf ′(m, t) are the items, the dynamic segments of the bus cycles are bins,
and pLatestTNp × gdMinislot is the minimum capacity required to fill a bin. The bin-
covering problem is NP-hard in the strong sense (Labbe et al. 1995), and our solution
is to determine an upper bound, using the approach presented in Labbe et al. (1995),
on the number of maximum bins that can be covered. The upper bounds proposed
in Labbe et al. (1995) are of polynomial complexity and lead to very good quality
results (see Appendix).

Note that, ignoring the conditions from (11–13) and determining an upper bound
for bin-covering can only lead to an increase in the number of bus cycles compared
to the exact solution. Experiments will show the impact of the heuristic on the pes-
simism of the analysis.

5.1.4 Heuristic solution for w′
m

A straightforward heuristic to the computation of w′
m stems from the observation that,

in a hypothetical worst-case scenario, message m could be sent in the last possible
moment of the current bus cycle, which means that

w′
m = STbus + pLatestTxNp

× gdMinislot, (16)

where STbus is the length of the ST segment of a bus cycle.

Real-Time Syst (2008) 39: 205–235 221

5.2 Holistic schedulability analysis of FPS tasks and DYN messages

As mentioned in Sect. 2, the worst-case response times of FPS tasks are influenced
on one hand by higher priority FPS tasks, and on the other hand by SCS tasks. The
worst-case response time Rij of a FPS task τij is determined as presented in Palencia
and Gonzaléz Harbour (1998), and in Pop et al. (2003) we have shown how to take
into consideration the interference on Rij produced by an existing static schedule.
What is important to mention is that Rij depends on jitters of the higher priority tasks
and predecessors of τij . This means that for all such activities we have to compute
the jitter. In the rest of this section we will only concentrate on the situation when the
jitter of a task depends on the arrival time of a message.

According to the analysis of multiprocessor and distributed systems presented in
Palencia and Gonzaléz Harbour (1998), the jitter for a task τr that starts execution
only after it receives a message m depends on the values of the best-case and worst-
case transmission times of that message:

Jτr = Rm − Rb
m. (17)

The calculation of the worst-case transmission time Rm of a DYN message m was
presented in Sect. 5.1. For computing Rb

m we have to identify the best-case scenario of
transmitting message m. Such a situation appears when the message becomes ready
immediately before the DYN slot with FrameIDm starts, and it is sent during that
bus cycle without experiencing any delay from higher priority messages. Thus, the
equation for the best-case transmission time of a message is:

Rb
m = Cm, (18)

where Cm is the time needed to send the message m.
We notice from (17) that the jitters for activities in the system depend on the values

of the worst case response times, which in turn depend on the values of the jitters (Pop
et al. 2005b). Such a recursive system is solved using a fixed point iteration algorithm
in which the initial values for jitters are 0.

Let us make a final remark. According to (Palencia and Gonzaléz Harbour 1998),
the worst-case response time calculation of FPS tasks is of exponential complexity
and the approach proposed in Palencia and Gonzaléz Harbour (1998) and also used
in Pop et al. (2003) is a heuristic with a certain degree of pessimism. The pessimism
of the response times calculated by our holistic analysis will, of course, also depend
on the quality of the solution for the delay induced by the DYN messages transmitted
over FlexRay. The calculation of this delay is our main concern in this paper. There-
fore, when we speak about optimal and heuristic solutions in this paper we refer to
the approach used for calculating the BusCyclesm and w′

m (used in the worst-case
response times calculation for DYN messages) and not the holistic response time
analysis which is based on the heuristics in Palencia and Gonzaléz Harbour (1998),
Pop et al. (2003).

222 Real-Time Syst (2008) 39: 205–235

5.3 Analysis for dual-channel FlexRay bus

The specification of the FlexRay protocol mentions that the bus has two commu-
nication channels (FlexRay 2005). The analysis presented above is appropriate for
systems where the two channels of the FlexRay bus are used in a redundant man-
ner, transporting the same information simultaneously in order to support fault-
tolerance.

In order to increase the bandwidth of the bus, one can use the two channels inde-
pendently, so that different sets of messages are sent over each of the channels during
a bus cycle. In this section we extend our previous analysis in order to compute the
worst case response times for messages transmitted in such systems.

First, we extend our system model (Fig. 1a) and consider that all nodes in the sys-
tem have access to a dual-channel FlexRay bus. As a consequence, in the application
model each message m is associated a pair 〈FrameIDm,Channelm〉, with the meaning
that message m is sent during FrameIDm on Channelm (where Channelm = {A,B}).

Second, we notice that the transmission of a message can be delayed only by
messages that are transmitted on the same channel. As a consequence, the only mod-
ification in the analysis presented in Sect. 5 is the definition of the sets lf (m) and
hp(m), which contain only those messages that are transmitted on Channelm:

• hp(m) becomes now the set of local messages with higher priority, that use the
same frame identifier and the same channel as m.

• lf (m) contains any messages in the system that can use Channelm and DYN slots
with lower frame identifiers than the one used by m.

5.4 Evaluation of analysis algorithms

We were interested to determine the quality of the proposed analysis approaches, and
how well they scale with the number of FlexRay messages that have to be analyzed.
All the experiments were run on P4 machines using 2 GB RAM. The ILP-based
solutions have been implemented using the CPLEX 9.1.2 ILP solver.7

We have generated synthetic applications of 20, 30, 40 and 50 tasks mapped on
architectures consisting of 2, 3, 4, and 5 nodes, respectively. Fifteen applications
were generated for each of these four cases. The number of time-critical FlexRay
messages were 30, 60, 90, and 120 for each case, respectively. Out of these, 10,
20, 30, and 40 messages were time-critical DYN messages that were analyzed using
the approaches presented in Sect. 5. We have considered a bus period of 1/100 of
the largest application period in the system, with 15% bandwidth allocated to the
DYN segment. We have randomly assigned transmission times Cm to DYN messages,
so that the time needed to send such a message was between 1/10 and 1/3 of the
DYN segment length. We have also randomly allocated DYN FrameIDs to nodes
and messages. Each such application has been analyzed using four holistic analysis
approaches, depending on the approach used for the calculation of the components
BusCyclesm and w′

m of the worst-case response time Rm for a DYN message:

7http://www.ilog.com/products/cplex

Real-Time Syst (2008) 39: 205–235 223

Holistic BusCyclesm w′
m

analysis

OO Optimal solution (5.1.1) Optimal solution (5.1.2)

OO− Optimal solution (5.1.1) ILP from 5.1.2 with 1 min time-out (O−)

OH Optimal solution (5.1.1) Heuristic solution (5.1.4)

HH Heuristic solution (5.1.3) Heuristic solution (5.1.4)

Among the solutions we proposed, OO will always provide the tightest worst-
case response times. However, it is only able to produce results for up to 20 DYN
messages in a reasonable time. We have noticed that the bottleneck for OO is the exact
calculation of w′

m (which is a value smaller than a bus cycle), and that running the ILP
from Sect. 5.1.2 using a time-out of one minute we are able to obtain near-optimal
results for w′

m. We have denoted with OO− such an analysis. Since the near-optimal
result for w′

m is a lower bound, OO− can lead to an incorrect (optimistic) result (i.e.,
the system is reported as schedulable, but in reality it might not be). Although OO− is,
thus, of no practical use, it is very useful in determining, by comparison, the quality
of our proposed FlexRay analysis heuristics, OH and HH.

In order to evaluate the approaches for FlexRay analysis, we have determined for
an analysis approach A the average ratio:

ratio = 1

n
×

∑

m∈DYN

RA
m

ROO−
m

, (19)

where A is one of the OO, OH or HH approaches and n is the number of messages in
the analysed application.

This ratio captures the degree of pessimism of A compared to OO−; the smaller
the ratio, the less pessimistic the analysis. The results obtained with OO, OH and
HH are presented in Table 1. For each application dimension, Table 1 presents the
average ratio and the average execution times of the complete analysis (including all
tasks and messages) in seconds. It is important to notice that, while the execution time
is for the whole analysis, including all tasks and messages, the ratio is calculated only
for the DYN messages, since their response time calculation is directly affected by
the degree of pessimism of the various approaches proposed in the paper. The ratio
calculated over all tasks and messages in the system is smaller than the ones shown
in Table 1.

Table 1 Comparison of FlexRay analysis approaches

No of 30 (10 DYN) 60 (20 DYN) 90 (30 DYN) 120 (40 DYN)

msgs. Ratio Exec. (s) Ratio Exec. (s) Ratio Exec. (s) Ratio Exec. (s)

OO 1.009 3.1 1.009 42.3 – – – –

OH 1.013 1.29 1.012 14.42 1.005 57.32 1.005 367.87

HH 1.016 0.012 1.018 0.019 1.012 0.036 1.012 0.04

224 Real-Time Syst (2008) 39: 205–235

We can see that OO is very close to OO−, which means that OO− is a good
comparison baseline (it is only slightly optimistic). Due to the very large execution
times, we were not able to run OO for more than 20 DYN messages.

Table 1 shows that OH produces very good quality results, in a reasonable time.
For example, for 40 DYN messages, the analysis has finished in 367.87 seconds on
average, and the average ratio is only 1.005.

Another result from Table 1 concerns the HH heuristic. Although HH is slightly
more pessimistic than OH (for example, the DYN response times determined with
HH were 1.012 times larger, on average, than those of OO− for applications with
30 messages, compared to 1.005 for OH), it is also significantly faster. We have suc-
cessfully analyzed with HH large applications, with over 100 DYN messages in 0.16
seconds on average. Thus, HH is also suitable for design space exploration, where
a potentially huge number of design alternatives have to be analyzed in a very short
time.

We have run a set of experiments with 15 applications of 40 tasks and 25 dy-
namic messages mapped on an architecture consisting of two nodes, and varied the
number of frame identifiers per processor. Figure 7 presents the ratio for HH cal-
culated according to (19) as we vary the number of frame identifiers per processor
from 2 to 6. We can see that the quality of the heuristic improves as the number of
frame IDs increases (and, consequently, the number of messages sharing the same
FrameID decreases). The more messages are sharing a FrameID, the more important
conditions (11–13) are to the quality of the result, because they restrict the way bins
can be covered (e.g., messages sharing the same FrameID should not be packed in
the same bin). However, even for a small number of frame IDs HH produces good
quality results (e.g., for two frame IDs, HH’s ratio is 1.1226).

We also considered a real-life example implementing a vehicle cruise controller
that consists of 54 tasks mapped over 5 nodes, resulting in 26 DYN messages. We
considered that 10 percent of the FlexRay communication cycle is allocated to the
DYN segment communication. Scheduling the system using the OO approach took
0.19 seconds. Using the OH approach took 0.08 s, while the HH alternative was the
fastest, finishing the analysis in 0.002 s. The average ratio of OH relative to OO is
1.003, while the average ratio of HH relative to OO is 1.004, which means that the
heuristics obtained results almost identical to the optimal approach OO.

Fig. 7 Quality of HH

Real-Time Syst (2008) 39: 205–235 225

6 Bus access optimisation

The design of a FlexRay bus configuration for a given system consists of a collection
of solutions for the following subproblems: (1) determine the length of an ST slot,
(2) the number of ST slots, and (3) their assignment to nodes; (4) determine the
length of the DYN segment, (5) assign DYN slots to nodes, and (6) FrameIDs to
DYN messages.

The choice of a particular bus configuration is extremely important when design-
ing a specific system, since its characteristics heavily influence the global timing
properties of the application.

For example, notice in Fig. 8 how the structure of the ST segment influences the
response time of message m3 (for this example we ignored the DYN segment). The
figure considers a system with two nodes, N1 that sends message m1 and N2 that
sends messages m2 and m3. The message sizes are depicted in the figure. In the
first scenario, the ST segment consists of two slots, slot1 used by N1 and slot2 used
by N2. In this situation, message m3 can be scheduled only during the second bus
cycle, with a response time of 16. If the ST segment consists of 3 slots (Fig. 8b),
with N2 being allocated slot2 and slot3, then N2 is able to send both its messages
during the first bus cycle. The configuration in Fig. 8c consists of only two slots,
like in Fig. 8a. However, in this case the slots are longer, such that several messages
can be transmitted during the same frame, producing a faster response time for m3
(one should notice, however, that by extending the size of the ST slots we delay the
reception of message m1 and m2).

Similar optimisations can be performed with regard to the DYN segment. Let us
consider the example in Fig. 9, where we have two nodes N1 and N2. Node N1 is
transmitting messages m1 and m3, while N2 sends m2. Figure 9 depicts three con-
figuration scenarios, a–c. Table A depicts the frame identifiers for the scenario in
Fig. 9a, while Table B corresponds to Fig. 9b–c. The length of the ST slot has been
set to 8. In Fig. 9a, the length of the DYN segment is not able to accommodate both
m1 and m2, thus m2 will be sent during the second bus cycle, after the transmission of
m3 ends. Figure 9b and Fig. 9c depict the same system but with a different allocation

Fig. 8 Optimisation of the ST segment

226 Real-Time Syst (2008) 39: 205–235

F
ig

.9
O

pt
im

is
at

io
n

of
th

e
D

Y
N

se
gm

en
t

Real-Time Syst (2008) 39: 205–235 227

of DYN slots to messages (Table B). In Fig. 9b we notice that m3, which now does
not share the same frame identifier with m1, can be sent during the first bus cycle,
thus m2 will be transmitted earlier during the second cycle. Moreover, if we enlarge
the size of the DYN segment as in Fig. 9c, then the worst-case response time of m2
will considerably decrease since it will be sent during the first bus cycle (notice that
in this case m3, having a greater frame identifier than that of m2, will be sent only
during the second cycle).

In order to illustrate the importance of choosing the right bus configuration, we
present three approaches for optimising the bus access such that the schedulability of
the system is improved. The first approach builds a relatively straightforward, basic,
bus configuration. The other two approaches perform optimization over the basic
configuration.

6.1 The basic bus configuration

In this section we construct a basic bus configuration (BBC) which is based on
analysing the minimal bandwidth requirements imposed by the application.

The BBC algorithm is presented in Fig. 10 and it starts by setting the number of
ST slots in a bus cycle. The length Tbus of the bus cycle is captured by the gdCycle
protocol parameter. Since each node in the system that generates ST messages needs
at least one ST slot, the minimum number of ST slots is nodesST , the number of nodes
that send ST messages (line 1). The protocol specification also imposes a minimum
limit on the number of ST slots, therefore even if there are no nodes in the system that
are using the ST segment, there should be at least two ST slots during a bus cycle.
Next, the size of an ST slot is set so that it can accommodate the largest ST message
in the system (line 2). In line 4, the configuration of the ST segment is completed by
assigning in a round robin fashion one ST slot to each node that requires one (i.e. in
a system with four nodes, where each node is sending in the static segment, the ST
segment of the bus cycle will contain four slots; node 1 will use slot 1, node 2 will
use ST slot 2, etc.).

When it comes to determining the size of the DYN segment, one has to take into
consideration the fact that the period of the bus cycle (gdCycle) has to be an integer

1 gdNumberOfStaticSlots = max(2, nodesST)
2 gdStaticSlot = max(Cm), m is an ST message
3 STbus = gdNumberOfStaticSlots *gdStaticSlot
4 assign one ST slot to each node (round robin)
5 for n = 1 to 64 do
6 gdCycle = Tss/n
7 if gdCycle < 16000 µs then
8 DYNbus = gdCycle − STbus
9 Assign FrameIDs to DYN messages
10 GlobalSchedulingAlgorithm()
11 Compute cost function Cost
12 if Cost < BestCost then save current solution
13 end if
14 end for

Fig. 10 Basic bus configuration

228 Real-Time Syst (2008) 39: 205–235

divisor8 of the period of the global static schedule (Tss). In addition, the FlexRay
protocol specifies that each node implementing a cyclic schedule maintains in the
communication controller a counter vCycleCounter that has values in the interval
0..63. This means that during a period of the static schedule there can be at most
64 bus cycles, which leads us to the conclusion that the value of gdCycle can be
determined by iterating over all possible values for vCycleCounter (lines 5–14) and
choosing the most favourable solution in terms of system schedulability (line 11).
Line 7 introduces a restriction imposed by the FlexRay specification, which limits
the maximum bus cycle length to 16 ms. Once the length of the bus cycle is set
(line 5), knowing the length STbus of the ST segment (line 3), we can determine the
length DYNbus of the DYN segment (line 8).

At this point, in order to finish the design of the bus configuration, a FrameID has
to be assigned to each of the DYN messages (and implicitly DYN slots are assigned
to the nodes that generate the message). This assignment (line 9) is performed under
the following guidelines:

• Each DYN message receives an unique FrameID; this is recommended in order to
avoid large delays introduced by hp(m) in (5). For example, in Fig. 9, we notice
that message m3 has to wait for an entire gdCycle when it shares a frame identifier
with the higher priority message m1(Fig. 9a), which is not the case when it has its
own FrameID (Fig. 9b).

• DYN messages with a higher criticality receive smaller FrameIDs.; this is required
in order to reduce, for a given message, the delay produced by lf (m) and ms(m)

in (5). We capture the criticality of a message m as:

CPm = Dm − LPm, (20)

where Dm is the deadline of the message and LPm is the longest path in the task
graph from the root to the node representing the communication of message m.
A small value of CPm (higher criticality) indicates that the message should be
assigned a smaller FrameID.

Once we have defined the structure of the bus cycle, we can analyse the entire
system (line 9) by performing the global static scheduling and analysis described in
Sect. 5. The resulted system is then evaluated using a cost function that captures the
schedulability degree of the system (line 10):

Cost =
{

f1 = ∑
τij

max(Rij − Dij ,0), if f1 > 0,

f2 = ∑
τij

(Rij − Dij), if f1 = 0,
(21)

where Rij and Dij are the worst case response times and respectively the deadlines
for all the activities τij in the system. This function is strict positive if at least one
task or message in the system misses its deadline, and negative if the whole system
is schedulable. Its value is used in line 11 when deciding whether the current config-
uration is the best one encountered so far.

8We consider that the TSS parameter is slightly adjusted, if necessary.

Real-Time Syst (2008) 39: 205–235 229

6.2 Greedy heuristic

The Basic Bus Configuration (BBC) generated as in the previous section can result in
an unschedulable system (the cost function in (21) is positive). In this case, additional
points in the solution space have to be explored. In Fig. 11 we present a greedy
heuristic that further explores the design space in order to find a schedulable solution.

While for the BBC the number and size of ST slots has been set to the mini-
mum (gdNumberOfStaticSlotsmin = max(2,nodes), gdStaticSlotmin = max(Cm)), the
heuristic explores different alternative values between these minimal values and the
maxima imposed by the protocol specification (FlexRay 2005). Thus, during a bus
cycle there can be at most gdNumberOfStaticSlotsmax = 1023 ST slots, while the
size of a ST slot can take at most gdStaticSlotmax = 661 macroticks. In addition, the
payload for a FlexRay frame can increase only in 2-byte increments, which according
to the FlexRay specification translates into 20 gdBit, where gdBit is the time needed
for transmitting one bit over the bus (line 2).

The assignment of ST slots (line 3) to nodes is performed, like for the BBC, in a
round robin fashion, with the difference that each node can have not only one but a
quota of ST slots determined by the ratio of ST messages that it transmits (i.e. a node
that sends more ST messages will be allocated more ST slots).

The sizes of the bus cycle and of the DYN segment are assigned in lines 4–16 in a
similar way to the BBC algorithm.

However, while for the BBC the allocation of FrameIDs to DYN messages is based
on the estimated criticality (20), here we explore several FrameID assignment alter-
natives inside the loop in lines 8–14. We start from an initial assignment as in the
BBC after which a global scheduling is performed (line 10). Using the resulted re-
sponse times, in the next iteration we assign smaller FrameIDs with priority to those
DYN messages m that have a smaller value for Dm − Rm, where Dm is the deadline
and Rm is the worst case response time computed by the global scheduling.

1 for gdNumberOfStaticSlots = gdNumberOfStaticSlotsmin to
gdNumberOfStaticSlotsmax do

2 for gdStaticSlot = gdStaticSlotmin to gdStaticSlotmax step 20 *
gdBit do

3 Assign ST slots to nodes
4 for n = 1 to 64 do
5 gdCycle = Tss/n
6 if gdCycle < 16000 µs then
7 DYNbus = gdCycle − STbus
8 do
9 Assign FrameIDs to DYN messages
10 GlobalSchedulingAlgorithm()
11 For all DYN messages, compute CPi
12 Compute cost function Cost
13 if Cost < BestCost then save current solution
14 while(BestCost unchanged for max_iterations);
15 end if
16 end for
17 end for
18 end for

Fig. 11 Greedy heuristic

230 Real-Time Syst (2008) 39: 205–235

6.3 Simulated annealing based approach

We have implemented a more exhaustive design space exploration than the one in
Sect. 6.2, using a simulated annealing (Kirkpatrick et al. 1983) approach. While rel-
atively time consuming, this heuristic can be applied if both the BBC and the config-
uration produced by the greedy approach are unschedulable. Starting from the solu-
tion produced by the greedy optimisation, the SA based heuristic explores the design
space performing the following set of moves:

• gdNumberOfStaticSlots is incremented or decremented, inside the allowed limits
(when an ST slot is added, it is allocated randomly to a node);

• gdStaticSlot is increased or decreased with 20 × gdBit, inside the allowed limits;
• The assignment of ST slots to nodes is changed by re-assigning a randomly se-

lected ST slot from a node N1 to another node N2. We also use in this context a
similar transformation that switches the allocation of two ST slots, FrameID1 and
FrameID2, used by two nodes N1 and N2 respectively;

• The assignment of DYN slots to messages is modified by switching the slots used
by two DYN messages.

In Sect. 6.4 we used extensive, time consuming runs with the Simulated Anneal-
ing approach, in order to produce a reference point for the evaluation of our greedy
heuristic.

6.4 Evaluation of bus optimisation heuristics

In order to evaluate our optimisation algorithms we generated seven sets of 25 ap-
plications representing systems of 2 to 7 nodes respectively. We considered 10 tasks
mapped on each node, leading to applications with a number of 20 to 70 tasks. De-
pending on the mapping of tasks, each such system had up to 60 additional nodes in
the application task graph due to the communication tasks. The tasks were grouped
in task graphs of 5 tasks each. Half of the tasks in each system were time triggered
and half were event triggered. The execution times were generated in such a way that
the utilisation on each node was between 30% and 60% (similarly, the message trans-
mission times were generated so that the bus utilisation was between 10% and 70%).
All experiments were run on an AMD Athlon 2400+ PC.

Figure 12 shows the results obtained after running our three algorithms pro-
posed in Sect. 6 (BBC—Basic Bus Configuration, GH—Greedy Heuristic, and SA—
Simulated Annealing). In Fig. 12a we show the percentage of schedulable applica-
tions, while in Fig. 12b we present the computation times required by each algorithm.
One can notice that the BBC approach runs in almost zero time, but it fails to find
any schedulable configurations for systems with more than 4 processors. On the other
hand, the other two approaches continue to find schedulable solutions even for larger
systems. Moreover, the percentage of schedulable solutions found by the greedy al-
gorithm is comparable with the one obtained with the simulated annealing. Moreover,
the computation time required by the greedy heuristic is several orders of magnitude
smaller than the one needed for the extensive runs of simulated annealing.9

9Due to the extensive runs with SA, we can assume that the actual percentage of schedulable applications
is close to that found by SA.

Real-Time Syst (2008) 39: 205–235 231

Fig. 12 Evaluation of bus optimisation algorithms

Finally, we considered the same real-life example implementing a vehicle cruise
controller as in Sect. 5.4. It consists of 54 tasks and 26 messages grouped in 4 task
graphs that are mapped over 5 nodes. Two of the task graphs were time triggered and
the other two were event triggered. Configuring the system using the BBC approach
took less than 0.001 seconds but resulted in a unschedulable system. Using the greedy
heuristic approach took 0.02 seconds, while the simulated annealing was allowed to
run for more than one hour; the cost function obtained by the latter was 4% smaller
(meaning that the response times were also smaller) than in the solution obtained
with the greedy heuristic, but in both cases the selected bus configuration resulted in
a schedulable system.

7 Conclusions

In this paper, we have presented a schedulability analysis for the FlexRay commu-
nication protocol. For ST messages we have built a static cyclic schedule, while for
DYN messages we have, for the first time, developed a worst-case response time
analysis. This analysis has been integrated in the context of a holistic schedulability
analysis that determines the timing properties for all the tasks and messages in the
system. Since FlexRay is rapidly becoming one of the preferred protocols for auto-
motive applications, the development of such an analysis is of huge importance.

We have proposed three approaches for the derivation of worst-case response times
of DYN messages. OO uses an ILP formulation to derive the optimal solution for
the communication delay. HH uses heuristic-based upper-bounds for a bin-covering
problem in order to quickly determine good quality response times. OH is able to
further reduce the pessimism of HH by using an ILP formulation for one part of the
solution. Our experiments have shown that the HH approach is efficiently producing
high quality results.

Finally, we have shown the importance of finding a bus configuration that is dedi-
cated to the particular needs of the application, and have also proposed heuristics that

232 Real-Time Syst (2008) 39: 205–235

are able to generate such a configuration. Experiments have shown that the proposed
heuristics are able to find bus access parameters that are well adapted to the spe-
cific requirements of the applications, and thus rendering a potentially unschedulable
solution schedulable.

Appendix

In this appendix we briefly present the bin covering heuristics that we used in our
timing analysis. These heuristics are presented in more detail in Labbe et al. (1995).

The bin covering problem considers a set of n items of weights w1 . . .wn and an
unlimited number of bins of infinite capacity. The target is to fill as many bins as
possible with a minimum capacity Cmin, using the n given items.

The heuristics presented below determine upper bounds for a given instance of the
bin covering problem. All the following operations assume that the items are sorted
in decreasing order of their weights: w1 ≥ w2 ≥ · · · ≥ wn.

Before computing the upper bounds, the list of items is first processed based on
the following reduction criteria:

1. Any item with wj > Cmin can be assigned alone to a bin. We denote with R1 the
number of such items and we eliminate them from the list of items.

2. If two items k and l satisfy the condition wk + wl = Cmin then there exists an
optimal solution in which a bin contains only items k and l. We denote with R2
the number of bins that can be filled in this way and we remove from the list the
items that satisfy this reduction criterion.

3. Let k be the maximum index such that w1 + ∑n
j=k wj ≥ Cmin. If w1 + wk ≥ Cmin

then there exists an optimal solution in which a bin contains only items 1 and k.
The number of bins that can be filled in this way is denoted with R3 and the items
that fill these bins according to the 3rd criterion are removed from the list.

In a second step, we use the n′ remaining items to fill bins with at least Cmin. The
heuristics presented bellow will determine upper bounds for the maximum value we
are looking for.

1. Since no two remaining items can fill a bin up to Cmin, then U0 = �n′
2 �.

2. The continuous relaxation of the problem gives another bound: U1 = �∑n′
j=1

wj

Cmin
�.

3. Let t = min{s: ∑n′
h=s wh < Cmin} and define p(j) = min{p: ∑j+p

h=j wh ≥ Cmin}
for j = 1, . . . , τ = min(�n′

2 �, t − 1). Then, for k = 0,1, . . . , τ,U2(k) = k +
�∑n′−α(k)

j=k+1
wj

Cmin
�, where α(0) and α(k) = ∑k

j=1 p(j) for k > 0, is a valid upper
bound for the bin covering problem that considers the reduced set of items. We
denote with U2 the minimum of all these values: U2 = min(U2(k)), k = 1, . . . , τ .

4. Let β(j) be the smallest index k such that wj + ∑β(j)

k=1,k =j wk ≥ Cmin and define

q(j) = β(j) if β(j) > j , q(j) = β(j) + 1 otherwise. Then U3 = �∑n′
j=1

1
q(j)

� is
a valid upper bound for the bin covering problem using the reduced set of items.

The upper bound we are looking for is determined as the minimum of the four
values U0, U1, U2, U3: U = min(U0,U1,U2,U3).

Real-Time Syst (2008) 39: 205–235 233

This result can be further improved as follows: given an upper bound value U , if

U > �
∑n′

j=1 wj −(3U−n′)
Cmin

� then U − 1 is a valid upper bound value.
Considering now the initial set of items, before the reductions in the first step,

the upper bound UB of the maximum number of bins that can be filled with Cmin is:
UB = R1 + R2 + R3 + U .

References

Agrawal G, Chen B, Zhao W, Davari S (1994) Guaranteeing synchronous message deadlines with the
token medium access control protocol. IEEE Trans Comput 43(3):327–339

Berwanger J, Peller M, Griessbach R (2000) A new high performance data bus system for safety-related
applications. http://www.byteflight.de

R Bosch GmbH (1991) CAN Specification Version 2.0
Cena G, Valenzano A (2004) Performance analysis of Byteflight networks. In: Proceedings of the IEEE

International Workshop on Factory Communication Systems, pp 157–166
Coffman EG Jr, Graham RL (1972) Optimal scheduling for two processor systems. Acta Inform 1:200–

203
Ding S, Murakami N, Tomiyama H, Takada H (2005) A GA-based scheduling method for FlexRay sys-

tems. In: Proceedings of EMSOFT
Labbe M, Laporte G, Martello S (1995) An exact algorithm for the dual bin packing problem. Oper Res

Lett 17:9–18
Echelon (2005) LonWorks: The LonTalk protocol specification. http://www.echelon.com
Ermedahl H, Hansson H, Sjödin M (1997) Response-time guarantees in ATM networks. In: Proceedings

of the IEEE Real-Time Systems Symposium, pp 274–284
FlexRay homepage (2005) http://www.flexray-group.com
Hamann A, Ernst R (2005) TDMA time slot and turn optimization with evolutionary search techniques.

In: Proceedings of the Design, Automation and Test in Europe Conference, vol 1, pp 312–317
Hoyme K, Driscoll K (1992) SAFEbus. IEEE Aerosp Electron Syst Mag 8(3):34–39
International Organization for Standardization (2002) Road vehicles-Controller Area Network (CAN)—

Part 4: Time-triggered communication. ISO/DIS 11898–4
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimisation by simulated annealing. Science 220:671–680
Kopetz H, Bauer G (2003) The time-triggered architecture. Proc IEEE 91(1):112–126
Local Interconnect Network Protocol Specification (2005). http://www.lin-subbus.org
Miner PS (2000) Analysis of the SPIDER fault-tolerance protocols. In: Proceedings of the 5th NASA

Langley Formal Methods Workshop
Navet N, Song Y, Simont-Lion F, Wilwert C (2005) Trends in automotive communication systems. Proc

IEEE 93(6):1204–1223
Palencia JC, Gonzaléz Harbour M (1998) Schedulability analysis for tasks with static and dynamic offsets.

In: Proceedings of the Real-Time Systems Symposium, pp 26–38
Pop P, Eles P, Peng Z, Doboli A (2000) Scheduling with bus access optimization for distributed embedded

systems. IEEE Trans VLSI Syst 8(5):472–491
Pop T, Eles P, Peng Z (2003) Schedulability analysis for distributed heterogeneous time event-triggered

real-time systems. In: Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS
2003), pp 257–266

Pop P, Eles P, Peng Z (2004) Schedulability-driven communication synthesis for time-triggered embedded
systems. Real-Time Syst J 24:297–325

Pop P, Eles P, Peng Z (2005a) Schedulability-driven frame packing for multi-cluster distributed embedded
systems. ACM Trans Embed Comput Syst 4(1):112–140

Pop T, Pop P, Eles P, Peng Z (2005b) Optimization of hierarchically scheduled heterogeneous embed-
ded systems. In: Proceedings of 11th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pp 67–71

Profibus International (2005) PROFIBUS DP Specification. http://www.profibus.com
Rushby J (2001) Bus architectures for safety-critical embedded systems. Lecture notes in computer sci-

ence, vol 2211. Springer, Berlin, pp 306–323

234 Real-Time Syst (2008) 39: 205–235

SAE Vehicle Network for Multiplexing and Data Communications Standards Committee (1994) SAE
J1850 Standard

Strosnider JK, Marchok TE (1989) Responsive, deterministic IEEE 802 5 token ring scheduling. J Real-
Time Syst 1(2):133–158

Tindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time systems, Micro-
process. Microprogram. 50(2–3)

Tindell K, Burns A, Wellings A (1995) Calculating CAN message response times. Control Eng Pract
3(8):1163–1169

Traian Pop has received his B.Sc. degree in Computer Science and Engineering
from “Politehnica” University of Timisoara, Romania, in 1999, and the Licentiate
of Engineering and Ph.D. degrees in Computer Science from Linköping University,
Sweden, in 2003 and 2007, respectively.

His research interests are in the area of timing analysis and design optimisation
of embedded systems.

Traian Pop was co-recipient of the best presentation award at the IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS 2003), and of the best paper award at the Real-Time in Sweden
Conference (RTiS 2007). He was also nominated for the best paper award at the
Design Automation Conference (DAC 2001).

Currently, he is a guest researcher at Linköping University, Sweden.

Paul Pop is an associate professor at the Informatics and Mathematical Modelling
Dept., Technical University of Denmark. He has received his Ph.D. in Computer
Systems from Linköping University, Sweden, in 2003.
He is active in the area of analysis and design of real-time embedded systems,
where he has published extensively and co-authored several book chapters and
one book.
Paul Pop received the best paper award at the Design, Automation and Test in Eu-
rope Conference (DATE 2005) and at the Real-Time in Sweden Conference (RTiS
2007) and was nominated for the best paper award at the Design Automation Con-
ference (DAC 2001).
He is currently involved in the ARTIST2 (Advanced Real-Time Systems Informa-

tion Society Technologies) Network of Excellence on embedded systems design.

Petru Eles received the Ph.D. degree in computer science from the Politehnica
University of Bucharest, Romania, in 1993. He is currently a professor with the
Department of Computer and Information Science at Linköping University, Swe-
den. His research interests include embedded systems design, hardware–software
codesign, real-time systems, system specification and testing, and CAD for digital
systems. He has published extensively in these areas and coauthored several books,
such as “System Synthesis with VHDL” (Kluwer Academic, 1997), “System-
Level Design Techniques for Energy-Efficient Embedded Systems” (Kluwer Aca-
demic, 2003), “Analysis and Synthesis of Distributed Real-Time Embedded Sys-
tems” (Kluwer Academic, 2004), and “Real-Time Applications with Stochastic
Task Execution Times: Analysis and Optimisation” (Springer, 2006). He was a

corecipient of the Best Paper Awards at the European Design Automation Conference in 1992 and 1994,
and at the Design Automation and Test in Europe Conference in 2005, and of the Best Presentation Award
at the 2003 IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and System Syn-
thesis.
Petru Eles is an Associate Editor of the IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, and of the IEE Proceedings—Computers and Digital Techniques. He has served as a
Program Committee member for numerous international conferences in the areas of Design Automation,

Real-Time Syst (2008) 39: 205–235 235

Embedded Systems, and Real-Time Systems, and as a TPC chair and General chair of the IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis.
Petru Eles has served as an IEEE CAS Distinguished Lecturer for 2004 and 2005. He is a member of the
IEEE and of the ACM.

Zebo Peng received the B.Sc. degree in Computer Engineering from the South
China Institute of Technology, China, in 1982, and the Licentiate of Engineering
and Ph.D. degrees in Computer Science from Linköping University, Sweden, in
1985 and 1987, respectively. He is Full Professor of Computer Systems, Director
of the Embedded Systems Laboratory, and Chairman of the Division for Software
and Systems in the Department of Computer Science, Linköping University. He is
also the Director of the National Graduate School of Computer Science in Sweden.
His current research interests include design and test of embedded systems, elec-
tronic design automation, SoC testing, design for testability, hardware/software
co-design, and real-time systems. He has published more than 200 technical pa-
pers, and co-authored the books “System Synthesis with VHDL” (Kluwer Acad-

emic, 1997), “Analysis and Synthesis of Distributed Real-Time Embedded Systems” (Kluwer Academic,
2004), “System-level Test and Validation of Hardware/Software Systems” (Springer, 2005), and “Real-
Time Applications with Stochastic Task Execution Times” (Springer, 2007).
Prof. Peng was co-recipient of two best paper awards at the European Design Automation Conferences
(1992 and 1994), a best paper award at the IEEE Asian Test Symposium (2002), a best paper award
at the Design Automation and Test in Europe Conference (2005), and a best presentation award at the
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (2003).
He serves currently as Associate Editor of the IEEE Transactions on VLSI Systems, VLSI Design Journal,
and the EURASIP Journal on Embedded Systems. He has served as Guest Editor for the special issue
on “Emerging Strategies for Resource-Constrained Testing of System Chips” in the IEE Proceedings for
Computer and Digital Techniques and the special issue on “Design Methodologies and Tools for Real-
Time Embedded Systems” in the Journal on Design Automation for Embedded Systems. He has served on
the program committee of a dozen international conferences and workshops, including ATS, ASP-DAC,
DATE, DDECS, DFT, ETS, ITSW, MEMOCDE and VLSI-SOC. He was the General Chair of the 6th
IEEE European Test Workshop (ETW’01), the Program Chair of the 7th IEEE Design & Diagnostics of
Electronic Circuits & Systems Workshop (DDECS’04), and the Test Track Chair of the 2006 Design Au-
tomation and Test in Europe Conference (DATE’06). He is the Program Chair of the 12th IEEE European
Test Symposium (ETS’07), and the Program Chair of DATE’08. He is the Chair of the IEEE European
Test Technology Technical Council (ETTTC), and has been a Golden Core Member of the IEEE Computer
Society since 2005.

Alexandru Andrei received the MS degree from Politehnica University Timisoara,
Romania, in 2001 and the Ph.D. degree in computer engineering from Linköping
University, Sweden in 2007. His research interests include low-power design, real-
time systems, and hardware–software codesign. He is currently affiliated with
Ericsson AB, Sweden.

	Timing analysis of the FlexRay communication protocol
	Abstract
	Introduction
	System model
	The FlexRay communication protocol
	Application model
	Timing analysis
	Schedulability analysis of DYN messages
	Optimal solution for BusCyclesm
	Optimal solution for w'm
	Heuristic solution for BusCyclesm
	Heuristic solution for w'm

	Holistic schedulability analysis of FPS tasks and DYN messages
	Analysis for dual-channel FlexRay bus
	Evaluation of analysis algorithms

	Bus access optimisation
	The basic bus configuration
	Greedy heuristic
	Simulated annealing based approach
	Evaluation of bus optimisation heuristics

	Conclusions
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

