
Analysis and Synthesis
of Communication-Intensive

Heterogeneous Real-Time Systems

Linköping Studies in Science and Technology
Dissertation No. 833

Paul Pop

Department of Computer and Information Science
Linköpings universitet

SE–581 83 Linköping, Sweden

Linköping, 2003

ISBN 91–7373–683–X ISSN 0345–7524
PRINTED IN LINKÖPING, SWEDEN

BY UNITRYCK, LINKÖPINGS UNIVERSITET

COPYRIGHT © 2003 PAUL POP

To Liana

Abstract

EMBEDDED COMPUTER SYSTEMS are now everywhere: from
alarm clocks to PDAs, from mobile phones to cars, almost all the
devices we use are controlled by embedded computer systems. An
important class of embedded computer systems is that of real-time
systems, which have to fulfill strict timing requirements. As real-
time systems become more complex, they are often implemented
using distributed heterogeneous architectures.

The main objective of this thesis is to develop analysis and syn-
thesis methods for communication-intensive heterogeneous hard
real-time systems. The systems are heterogeneous not only in terms
of platforms and communication protocols, but also in terms of
scheduling policies. Regarding this last aspect, in this thesis we con-
sider time-driven systems, event-driven systems, and a combination
of both, called multi-cluster systems. The analysis takes into
account the heterogeneous interconnected nature of the architec-
ture, and is based on an application model that captures both the
dataflow and the flow of control. The proposed synthesis techniques
derive optimized implementations of the system that fulfill the
design constraints. An important part of the system implementation
is the synthesis of the communication infrastructure, which has a
significant impact on the overall system performance and cost.

To reduce the time-to-market of products, the design of real-time
systems seldom starts from scratch. Typically, designers start from
an already existing system, running certain applications, and the
design problem is to implement new functionality on top of this sys-
tem. Hence, in addition to the analysis and synthesis methods pro-
posed, we have also considered mapping and scheduling within
such an incremental design process.

The analysis and synthesis techniques proposed have been thor-
oughly evaluated using a solid experimental platform. Besides the
evaluations, performed using a large number of generated example
applications, we have also validated our approaches using a realis-
tic case study consisting of a vehicle cruise controller.

Acknowledgements

THERE HAVE BEEN five great years in the Embedded Systems
Lab. I would like to thank Petru Eles for introducing me to embed-
ded systems and coffee. He has always been there for me, as a
friend, mentor and supervisor. My thanks also to Zebo Peng who
has been the model, politically correct, no-nonsense supervisor.

I am grateful to my past and present colleagues at IDA for provid-
ing a stimulating, creative, and pleasant working environment, and
towards the administrative and technical staff, that have always
been supportive. Many thanks also to the people at Volvo Technol-
ogy Corporation in Göteborg, for their insightful ideas throughout
all the stages of this work.

I would also like to thank the colleagues from the ARTES research
network, for their feedback and ideas during our summer schools
and graduate student conferences.

Last but not least, my deepest gratitude for their love and sup-
port to Liana, to whom this thesis is dedicated, my family (Letitia,
Teodor and Adrian), and my friends.

Linköping, May 2003

Paul Pop

,

ix

Contents

I Preliminaries

1 Introduction 1
1.1 A Typical Application Area:

Automotive Electronics ...3
1.2 Communication-Intensive Heterogeneous

Real-Time Systems..6
1.3 Thesis Objectives ...10
1.4 Research Contributions...11
1.5 Thesis Overview ..13

2 System-Level Design and Modeling 17
2.1 System-Level Design ...18
2.2 Incremental Design Process..27
2.3 Application Modeling...29

3 Communication-Intensive Heterogeneous
Real-Time Systems 45
3.1 Time-Triggered vs. Event-Triggered46
3.2 The Hardware Platform ..48
3.3 Time-Driven Systems ..53
3.4 Event-Driven Systems...56
3.5 Multi-Cluster Systems ..60

x

II Time-Driven Systems

4 Scheduling and Bus Access Optimization
for Time-Driven Systems 67
4.1 Background ..68
4.2 Scheduling with Control and Data Dependencies70
4.3 Scheduling for Time-Driven Systems...........................77
4.4 Bus Access Optimization...85
4.5 Experimental Results..89

5 Incremental Mapping for Time-Driven Systems 95
5.1 Background ..97
5.2 Incremental Mapping and Scheduling101
5.3 Quality Metrics and Objective Function103
5.4 Mapping and Scheduling Strategy109
5.5 Experimental Results..125

III Event-Driven Systems

6 Schedulability Analysis and Bus Access
Optimization for Event-Driven Systems 139
6.1 Background ..140
6.2 Response Time Analysis..142
6.3 Schedulability Analysis under

Control and Data Dependencies152
6.4 Schedulability Analysis for Distributed Systems162
6.5 Schedulability Analysis for the

Time Triggered Protocol..166
6.6 Schedulability Analysis for Event-Driven Systems.....178
6.7 Bus Access Optimization...180
6.8 Experimental Results..186

7 Incremental Mapping for Event-Driven Systems 201
7.1 Application Mapping and Scheduling203
7.2 Mapping and Scheduling in an

Incremental Design Approach207
7.3 Quality Metrics and Exact Problem Formulation209
7.4 Mapping and Scheduling Strategy216
7.5 Experimental Results..225

xi

IV Multi-Cluster Systems

8 Schedulability Analysis and Bus Access
Optimization for Multi-Cluster Systems 237
8.1 Problem Formulation ..238
8.2 Multi-Cluster Scheduling..240
8.3 Scheduling and Optimization Strategy247
8.4 Experimental Results..252

9 Schedulability-Driven Frame Packing for
Multi-Cluster Systems 259
9.1 Problem Formulation ..261
9.2 Frame Packing Strategy ...262
9.3 Experimental Results..268

V Conclusion

10 Conclusions and
Future Work 275
10.1 Conclusions ..275
10.2 Future Work ..279

xiii

List of Figures

1.1 Worldwide Automotive Electronics Trends 4
1.2 A Distributed Real-Time System Example....................... 7
1.3 Distributed Safety-Critical Applications........................... 8

2.1 System-Level Design .. 19
2.2 Function/Architecture Co-design....................................... 23
2.3 Platform-Based Design... 25
2.4 Incremental Design Process... 28
2.5 A Conditional Process Graph Example............................. 31
2.6 Modeling Already Implemented Applications 37
2.7 Two Hardware Architectures for the Cruise Controller .. 40
2.8 The Cruise Controller Model.. 41
2.9 The Mapping of the Cruise Controller Model................... 42

3.1 Communication-Intensive Heterogeneous
Real-Time Systems ... 48

3.2 TTP Bus Access Scheme... 51
3.3 TTP Frame Configuration.. 52
3.4 CAN Frame Configuration... 53
3.5 A Message Passing Example for Time-Driven Systems .. 54
3.6 A Message Passing Example for Event-Driven Systems. 58
3.7 A Two-Cluster System Example.. 61
3.8 A Message Passing Example for Multi-Cluster Systems 63

xiv

4.1 List Scheduling Based Algorithm for CPGs74
4.2 Delay Estimation for PCP Scheduling...............................76
4.3 Static Cyclic Scheduling Examples with the TTP79
4.4 The ScheduleMessage Function...80
4.5 Priority Function Example ...82
4.6 The Lambda Function...85
4.7 Optimization of the Bus Access Scheme............................87
4.8 Comparison of the Two Priority Functions90

5.1 Mapping and Scheduling Examples for
Time-Driven Systems..98

5.2 Incremental Mapping and Scheduling Examples for
Time-Driven Systems..100

5.3 Examples for the Second Design Criterion........................107
5.4 The Mapping and Scheduling Strategy110
5.5 Process Graph Merging Example.......................................113
5.6 Step One and Two of the Mapping and

Scheduling Strategy in Figure 5.4......................................115
5.7 Successive Steps with Potential Moves for

Improving the First Design Metric117
5.8 Metric for the Subset Selection Heuristic..........................123
5.9 Comparison of the IMS and HCP Mapping Heuristics125
5.10 Evaluation of the Design Transformation Heuristics.......128
5.11 Percentage of Future Applications

Successfully Implemented ..130
5.12 Evaluation of the Modification Cost

Minimization Heuristics ...132
5.13 Implementation of the Cruise Controller134

6.1 Illustration of Schedulability Concepts145
6.2 Overview of the Schedulability Analysis Approaches147
6.3 Delay Estimation and Schedulability

Analysis for Process Graphs ...151
6.4 Application with Control and Data Dependencies............153
6.5 Example of Two CPGs...155
6.6 Schedulability Analysis Ignoring Conditions....................157
6.7 Brute Force Schedulability Analysis..................................158
6.8 Schedulability Analysis using Condition Separation160

xv

6.9 Delay Estimation for the RT Approaches 161
6.10 Worst-Case Arrival Time for SM....................................... 168
6.11 Optimizing the MEDL for SM and MM 170
6.12 Optimizing the MEDL for DM and DP 175
6.13 Greedy Heuristic for SM... 182
6.14 Greedy Heuristic for DM.. 184
6.15 Comparison of the Schedulability Approaches for CPGs. 188
6.16 Comparison of the Approaches Based on the

Number of Unconditional Subgraphs................................ 190
6.17 Comparison of the Approaches Based on the

Number of CPGs ... 191
6.18 Comparison of the Four Approaches to

Message Scheduling over TTP... 193
6.19 Four Approaches to Message Scheduling over TTP:

The Influence of the Messages Number............................ 195
6.20 Four Approaches to Message Scheduling over TTP:

The Influence of the Message Sizes................................... 196

7.1 Mapping and Scheduling Example for
Event-Driven Systems.. 204

7.2 Incremental Mapping and Scheduling Example for
Event-Driven Systems.. 206

7.3 Example for the Second Message Design Criterion 214
7.4 The Mapping and Scheduling Strategy

to Support Iterative Design.. 217
7.5 Determining the Delta Metrics.. 224
7.6 Evaluation of the Modification Cost Minimization

Heuristics... 227
7.7 Evaluation of the Design Transformation Heuristics...... 228
7.8 Percentage of Future Applications Successfully Mapped 231

8.1 Scheduling Examples for Multi-Clusters.......................... 239
8.2 The MultiClusterScheduling Algorithm 242
8.3 Response Time Analysis Example..................................... 246
8.4 The OptimizeSchedule Algorithm 249
8.5 The OptimizeResources Algorithm.................................... 250
8.6 Comparison of the Scheduling Optimization Heuristics . 253
8.7 Comparison of the Buffer Size Minimization Heuristics. 255

xvi

9.1 Frame Packing Examples for Multi-Cluster Systems......263
9.2 The OptimizeFramePacking Algorithm266
9.3 Evaluation of the Frame Packing Heuristics269

A.1 The Simulated Annealing Strategy282

xvii

List of Tables

4.1 Schedule Table for the Process Graph in Figure 2.5........ 72
4.2 Evaluation of the Bus Access Optimization Algorithms.. 91

6.1 Worst-Case Delays for the Application in Figure 6.4....... 154
6.2 Percentage Deviations for the Greedy Heuristics

Compared to Simulated Annealing 197

 PART I
Preliminaries

1

Chapter 1
Introduction

THE FIRST MODERN computers occupied entire rooms, had
thousands of vacuum tubes, dissipated hundreds of kilowatts of
heat, and could only execute a couple of thousands of additions
per second [EB03a]. Today, even a digital wristwatch uses com-
plex microprocessors, and dwarfs the performance of the first
electronic computers.

This extraordinary development is due to the microelectronics
revolution that, according to Moore’s law, allows us to double the
number of transistors integrated on a single chip every 18
months, from 2,300 in the first Intel 4004 chip to 42 million in
the latest Pentium 4 microprocessor [EB03b].

Not only have digital systems become more powerful, and
have integrated an increasing number of transistors, but their
cost has also dropped dramatically. This has led to a situation
where we have a huge amount of very cheap computation avail-
able on a very small physical size, allowing the digital systems
to be present in every aspect of our daily lives.

Nowadays, digital systems are everywhere. We are sur-
rounded by desktop computers, telephones, mobile phones, per-
sonal digital assistants (PDAs), pagers, printers, scanners,

CHAPTER 1

2

photocopiers, teleconferencing systems, TVs, stereo systems, DVD

players, VCRs, video game consoles, fax machines, digital cam-
eras, microwave ovens, washers, dryers, home security systems,
electronic toys, card readers, point-of-sale systems, ATMs, cars,
buses, trains, traffic systems, airplanes, etc., all of which contain
in some form or another a digital system.

Whenever the digital systems augment or control a function of
a host object or system, we say that these digital systems are
embedded into the host system, hence the term embedded sys-
tem. Out of the digital systems mentioned above, only the desk-
top computer is not an embedded system. The desktop computer
is a general purpose system that can be programmed to imple-
ment virtually any type of function. In contrast, embedded sys-
tems are not general purpose systems, rather, their functionality
is dedicated to perform a limited set of functions, required by the
host system.

Recently, the number of embedded systems in use has become
larger than the number of humans on the planet [Aar03]. That is
not difficult to believe, considering that more than 99% of the
microprocessors produced today are used in embedded systems
[Tur99]. Although the number of embedded systems and their
diversity is huge, they share a small, but significant, set of com-
mon characteristics:

 • Embedded systems are designed to perform a dedicated set
of functions.

For example, a mobile phone is designed principally for
placing and receiving calls; it cannot be programmed by the
user, for example, to solve differential equations.

 • Embedded systems have to perform under very tight, varied,
and competing constraints.

A wristwatch monitoring blood pressure has to be small
enough to be placed on the wrist, a mobile phone has to con-
sume very little power so the battery lasts for a couple of

INTRODUCTION

3

weeks, and in-vehicle electronics have to perform under very
tight timing constraints.

 • In addition to all these, embedded systems have to be cheap
to produce and maintain, and, at the same time, flexible
enough to be extended with new dedicated functions when-
ever necessary.

Therefore, in order to function correctly, an embedded system
not only has to be designed such that it implements the required
functionality, but also has to fulfill a wide range of competing
design constraints: development cost, unit cost, size, perfor-
mance, power, flexibility, time-to-prototype, time-to-market,
maintainability, correctness, safety [Vah02].

1.1 A Typical Application Area:
Automotive Electronics

Although the techniques developed in this thesis can be success-
fully used in several application areas, it is useful, for under-
standing the embedded systems evolution and design
challenges, to exemplify the developments in a particular area.

If we take the example of automotive manufacturers, they
were reluctant, until recently, to use computer controlled func-
tions onboard vehicles. Today, this attitude has changed for sev-
eral reasons. First, there is a constant market demand for
increased vehicle performance, more functionality, less fuel con-
sumption and less exhausts, all of these at lower costs. Then,
from the manufacturers side, there is a need for shorter time-to-
market and reduced development and manufacturing costs.
These, combined with the advancements of semiconductor tech-
nology, which is delivering ever increasing performance at lower
and lower costs, has led to the rapid increase in the number of
electronically controlled functions onboard a vehicle [Kop99].

The amount of electronic content in an average car cost $110
in 1977, is currently $1341, and it is expected that this figure

CHAPTER 1

4

will reach $1476 by the year 2005, continuing to increase
because of the introduction of sophisticated electronics found
until now only in high-end cars (see Figure 1.1) [Han02],
[Lee02]. It is estimated that in 2006 the electronics inside a car
will amount to 25% of the total cost of the vehicle (35% for the
high end models), a quarter of which will be due to semiconduc-
tors [Jos01], [Han02]. High-end vehicles currently have up to
100 microprocessors implementing and controlling various parts
of their functionality. The total market for semiconductors in
vehicles is predicted to grow from $8.9 billions in 1998 to $21 bil-
lion in 2005, amounting to 10% of the total worldwide semicon-
ductors market [Han02], [Kop99].

At the same time with the increased complexity, the type of
functions implemented by embedded automotive electronics sys-
tems has also evolved. Thanks to the semiconductors revolution,

0

200

400

600

800

1000

1200

1400

1600

1998 1999 2000 2001 2002 2003 2004 2005

Semiconductors
Auto electronics

Year

$
pe

r
ve

h
ic

le

market size
($ billions) 8.9 10.5 13.1 14.1 15.8 17.4 19.3 21.0

Semiconductors

Figure 1.1: Worldwide Automotive Electronics Trends

INTRODUCTION

5

in the late 50s, electronic devices became small enough to be
installed on board of vehicles. In the 60s the first analog fuel
injection system appeared, and in the 70s analog devices for con-
trolling transmission, carburetor, and spark advance timing
were developed. The oil crisis of the 70s led to the demand of
engine control devices that improved the efficiency of the engine,
thus reducing the fuel consumption. In this context, the first
microprocessor based injection control system appeared in 1976
in the USA. During the 80s, more sophisticated systems began to
appear, like electronically controlled braking systems, dash-
boards, information and navigation systems, air conditioning
systems, etc. In the 90s, development and improvement have
concentrated in the areas like safety and convenience. Today, it
is not uncommon to have highly critical functions like steering
or braking implemented through electronic functionality only,
without any mechanical backup, like is the case in drive-by-wire
and brake-by-wire systems [Chi96], [XbW98].

A large class of systems have tight performance and reliability
constraints. A good example is the engine control unit, whose
main task is to reduce the level of exhausts and the fuel con-
sumption by controlling the air and fuel mixture in each cylin-
der. For this, the engine controller is usually designed as a
closed-loop control system which has as feedback the level of
exhausts. The engine speed is the most important factor to con-
sider with respect to the timing requirements of the engine con-
troller. A typical 4 cylinder engine has an optimal speed of 6,000
revolutions per minute (RPM). At 6,000 RPM the air to fuel ratio
for each cylinder must be recomputed every 20 milliseconds
(ms). This means that in a 4 cylinder engine a single such con-
troller must complete the entire loop in 5 ms! For such an engine
controller, not meeting the timing constraint leads to a less effi-
cient fuel consumption and more exhausts [Chi96]. However, for
other types of systems, like drive-by-wire or brake-by-wire, not
fulfilling the timing requirements can have catastrophic conse-
quences.

CHAPTER 1

6

We have seen so far that the use of electronics in modern vehi-
cles is increasing, replacing or augmenting critical mechanical
and hydraulic vehicle components. Their complexity is growing
at a very high pace, and the constraints—in terms of functional-
ity, performance, reliability, cost and time-to-market—are get-
ting tighter. Therefore, the task of designing such systems is
becoming increasingly important and difficult at the same time.
New design techniques are needed, which are able to:

 • successfully manage the complexity of embedded systems,
 • meet the constraints imposed by the application domain,
 • shorten the time-to-market, and
 • reduce development and manufacturing costs.

1.2 Communication-Intensive Heterogeneous
Real-Time Systems

In this thesis we are interested in a particular class of systems
called embedded real-time systems. Very important for the cor-
rect functioning of such systems are their timing constraints.
For example, a vehicle cruise controller has to react within tens
of milliseconds to events originating from the driver or road con-
ditions. Kopetz [Kop97a] gives a definition for a real-time sys-
tem as being “a computer system in which the correctness of the
system behavior depends not only on the logical results of the
computations, but also on the physical instant at which these
results are produced.”

Real-time systems have been classified as hard real-time and
soft real-time systems [Kop97a]. Basically, hard real-time sys-
tems are systems where failing to meet a timing constraint can
potentially have catastrophic consequences. For example, a
brake-by-wire system in a car failing to react within a given time
interval can result in a fatal accident. On the other hand, a mul-
timedia system, which is a soft-real time system, can tolerate a

INTRODUCTION

7

certain amount of delays resulting maybe in a patchier picture,
without serious consequences besides some possible inconve-
nience to the user.

The work in this thesis is aimed towards hard-real time sys-
tems that implement safety-critical applications where timing
constraints are of utmost importance to the correct behavior of
the application.

Many such applications, following physical, modularity or
safety constraints, are implemented using distributed architec-
tures. In Figure 1.2 we have a distributed real-time system
implementing the electronic functions of a vehicle. For example,
the network on the left is responsible to implement functionality
related to the engine, while the network on the right implements
functions related to the powertrain, like brake-by-wire, anti
blocking system, etc.

Such systems are composed of several different types of hard-
ware components (called nodes), interconnected in a network.
An increasing number of such systems are today implemented
as heterogeneous distributed systems, which means that they
are composed of several networks, interconnected with each

Gateway

Engine

Powertrain
network

network

Node

Figure 1.2: A Distributed Real-Time System Example

CHAPTER 1

8

other. Each network has its own communication protocol and
two such networks communicate via a gateway which is a node
connected to both of them. This type of architectures are used in
increasing numbers in several application areas: networks on
chip are heterogeneous, we also see them in, for example, factory
systems, and they are very common in vehicles.

We use the term communication-intensive heterogeneous real-
time systems to denote systems where communication between
the functions implemented on different nodes has an important
impact on the overall system properties such as performance,
cost, maintainability, etc.

The application software running on such distributed archi-
tectures is composed of several functions. The way the functions
have been distributed on the architecture has evolved over time.
Initially, in automotive applications, each function was running

...

...

...

...

Gateway

Functions of the first application
Functions of the second application
Functions of the third application

Figure 1.3: Distributed Safety-Critical Applications

INTRODUCTION

9

on a dedicated hardware node, allowing the system integrators
to purchase nodes implementing required functions from differ-
ent vendors, and to integrate them together into their system.
The number of such nodes in the architecture has exploded,
reaching more than 100 in a high-end car. This has created a
huge pressure to reduce the number of nodes, use the resources
available more efficiently, and thus reduce costs.

This development has led to the need to integrate several
functions in one node. For this to be possible, middleware soft-
ware that abstracts away the hardware differences of the nodes
in the heterogeneous architecture has to be available [Eas02].
Using such a middleware architecture, the software functions
become independent of the particular hardware details of a
node, and thus they can be distributed on the hardware architec-
ture, as depicted in Figure 1.3.

Although an application is typically distributed over one sin-
gle network, we begin to see applications that are distributed
across several networks, like is the case in Figure 1.3 where the
third application, represented as black dots, is distributed over
the two networks. This trend is driven by the need to further
reduce costs, improve resource usage, but also by application
constraints like having to be physically close to particular sen-
sors and actuators. Moreover, not only are these applications
distributed across networks, but their functions can exchange
critical information through the gateway nodes.

Such safety-critical hard real-time distributed applications
running on heterogeneous distributed architectures are inher-
ently difficult to analyze and implement. Due to their distrib-
uted nature, the communication has to be carefully considered
during the analysis and design in order to guarantee that the
timing constraints are satisfied under the competing objective of
reducing the cost of the implementation.

CHAPTER 1

10

1.3 Thesis Objectives
We are interested in the analysis and synthesis of safety-critical
distributed applications implemented using communication-
intensive heterogeneous real-time systems.

Several design methodologies have been proposed for embed-
ded systems design. Regardless of the chosen methodology, there
are a number of major design tasks that have to be performed.

One major design task is to decide what components to
include in the hardware architecture and how these components
are connected. This is called the architecture selection phase. In
order to reduce costs, especially in the case of a mass market
product, the hardware architecture is usually reused, with some
modifications, for several product lines. Such a common hard-
ware architecture is denoted using the term hardware platform,
and consequently the design tasks related to such an approach
are grouped under the term platform-based design [Keu00].

Once a hardware platform has been fixed, the software func-
tions have to be specified. For the specification of functionality
we use, in this thesis, a control and dataflow graph based repre-
sentation [Ele98a], [Ele00] described in detail in Section 2.3.1.

Next, the designer has to decide what part of the functionality
should be implemented on which of the selected components (the
mapping task) and what is the execution order of the resulting
functions (the scheduling task). An important design task in the
context of distributed applications is the communication synthe-
sis task, which decides the characteristics of the communication
infrastructure and the access constraints to the infrastructure,
imposed on functions initiating an inter-node communication.

These design tasks can partially overlap, and they can be
assisted by analysis and (semi)automatic synthesis tools. In
addition, the design tasks have to be performed such that the
timing constraints of hard real-time applications are satisfied,
and the implementation costs are minimized.

INTRODUCTION

11

In this thesis we have provided analysis and synthesis meth-
ods for communication-intensive heterogeneous hard real-time
systems. The analysis takes into account the heterogeneous
interconnected nature of the architecture, and is based on an
application model which captures both the dataflow and the flow
of control. The synthesis techniques proposed derive implemen-
tations of the system that fulfill the design constraints and
reduce the costs. An important part of the system implementa-
tion is the synthesis of the communication infrastructure, which
has a significant impact on the overall system performance and
cost.

The design of real-time systems seldom starts from scratch.
Typically, designers start from an already existing system, run-
ning certain applications, and the design problem is to imple-
ment new functionality on this system. Moreover, after the new
functionality has been implemented, the resulting system has to
be structured such that additional functionality, later to be
added, can easily be accommodated.

Such an approach provides a high degree of flexibility during
the design process, and thus, can result in important reductions
of design costs. Therefore, our analysis and synthesis methods
have been considered within such an incremental design process.

1.4 Research Contributions
In our approach, a safety critical application is viewed as a set of
interacting processes mapped on heterogeneous networks con-
sisting of several interconnected programmable processors. Pro-
cess interaction is not only in terms of dataflow but also
captures the flow of control.

We have considered both the non-preemptive static cyclic
scheduling and the static priority preemptive scheduling
approaches for the scheduling of processes and messages.

CHAPTER 1

12

The scheduling and mapping strategies are based on a realis-
tic communication model and execution environment. We take
into consideration the overheads due to communication and the
execution environment, and consider the requirements of the
communication protocol during the scheduling and mapping
tasks.

In addition, the mapping and scheduling techniques are con-
sidered inside an incremental design process, where the modifi-
cation of existing applications has to be minimized, and the
resulted system has to be structured in such a way that future
applications can also be accommodated.

The main contributions of this thesis are:

 • a less pessimistic schedulability analysis technique that
bounds the worst-case response time of a hard real-time
application with both control and data dependencies
[Pop00b], [Pop00c].

 • a schedulability analysis in the context of a communica-
tion protocol employing a time-division multiple access
scheme, considering four different approaches to message
scheduling [Pop00a], [Pop02c], [Pop99d];

 • a schedulability analysis for hard real-time applications
mapped across multi-cluster distributed real-time systems
consisting of time-triggered and event-triggered clusters,
interconnected via gateways, including communication
buffer size and worst case queuing delay analysis for the
gateways responsible for routing inter-cluster traffic
[Pop03a];

 • static scheduling algorithms for systems with both data
and control dependencies, that take into consideration the
overheads due to the communication and the execution envi-
ronment, and consider the requirements of the communica-
tion protocol during the scheduling process [Pop99a],
[Pop99c], [Ele00];

INTRODUCTION

13

 • several optimization strategies for the synthesis of the bus
access scheme in order to fit the communication particular-
ities of a given application [Pop99a], [Ele00], [Pop00a],
[Pop03a], [Pop03b];

 • approaches to mapping and scheduling for hard real-time
applications within an incremental design process, such
that the already running applications are disturbed as little
as possible and there is a good chance that, later, new func-
tionality can easily be added to the resulted system [Pop01a],
[Pop01b], [Pop02a].

1.5 Thesis Overview
This thesis is structured in 5 parts, and has 10 chapters. In the
first part we present in detail the application model and the
hardware and software architectures considered. The second
part contains our analysis and synthesis methods for time-
driven systems, where the activation of processes and transmis-
sion of messages happen at predetermined points in time. In the
third part we provide an analysis and develop techniques for the
synthesis of event-driven systems, where the activation of pro-
cesses is done at the occurrence of significant events. The fourth
part combines time-driven and event-driven systems into heter-
ogeneous networks, and presents analysis and synthesis meth-
ods for applications distributed across such networks. The last
part contains our conclusions, discussions and future work
ideas.

This is, briefly, what each chapter is about:

 • Part I: Preliminaries
 — Chapter 2 (System-Level Design and Modeling) presents

the design methodologies commonly used in embedded
systems design, with an emphasis on function/architec-
ture co-design. We introduce the application model con-

CHAPTER 1

14

sidered, a control and dataflow graph based
representation [Ele98a], [Ele00] called conditional pro-
cess graph, as well as a model for characterizing existing
and future applications within an incremental design
process.

 — Chapter 3 (Communication-Intensive Heterogeneous
Real-Time Systems) presents the time-driven and event-
driven approaches to the design of real-time systems and
introduces the non-preemptive static cyclic scheduling
and fixed priority preemptive scheduling policies. We also
present the hardware and software architectures consid-
ered, including the details of the communication proto-
cols used: the time triggered protocol (TTP) [Kop03], which
is a time-driven protocol based on a time-division multi-
ple access (TDMA) bus access scheme, and the controller
area network protocol (CAN) [Bos91], an event-driven
communication protocol employing a collision avoidance
scheme.

 • Part II: Time-Driven Systems
 — Chapter 4 (Scheduling and Bus Access Optimization for

Time-Driven Systems) considers a non-preemptive static
scheduling approach for both processes and messages. In
such a context, we present previous work on the static
cyclic scheduling of systems with data and control depen-
dencies. This work is then extended to handle the sched-
uling of messages over a communication channel using
the time-triggered protocol. Several approaches to the
synthesis of communication parameters of a TDMA bus
are proposed.

 — Chapter 5 (Incremental Mapping for Time-Driven Sys-
tems) investigates the mapping and scheduling design
tasks in the context of an incremental design approach.
Such a design process satisfies two main requirements
when adding new functionality: the already running

INTRODUCTION

15

applications are disturbed as little as possible, and there
is a good chance that, later, new functionality can easily
be mapped on the resulted system. Our mapping and
scheduling approaches assume a non-preemptive static
cyclic scheduling policy and a communication model
based on the time-triggered protocol.

 • Part III: Event-Driven Systems
 — Chapter 6 (Schedulability Analysis and Bus Access Opti-

mization for Event-Driven Systems) assumes a preemp-
tive fixed priority scheduling approach for the processes
and a non-preemptive static cyclic scheduling approach
for the messages, based on the TTP. A schedulability anal-
ysis is developed considering four message scheduling
approaches for TTP. In addition, we show how, by consid-
ering both data and control dependencies when modeling
an application, we are able to reduce the pessimism of
the analysis. Optimization strategies that derive the
parameters of the communication protocol are proposed.

 — Chapter 7 (Incremental Mapping for Event-Driven Sys-
tems) addresses the same mapping and scheduling prob-
lems inside an incremental design process as discussed in
Chapter 5, but this time in the context of the architec-
tures and event-driven scheduling policies considered in
Chapter 6.

 • Part IV: Multi-Cluster Systems
 — Chapter 8 (Schedulability Analysis and Bus Access Opti-

mization for Multi-Cluster Systems) introduces the con-
cept of multi-cluster systems, which are heterogeneous
networks composed of several networks (called clusters),
interconnected via gateways. In this chapter we consider
a two-cluster configuration composed of a time-driven
cluster and an event-driven cluster. We propose a schedu-
lability analysis technique for such systems with an
emphasis on determining the communication delays

CHAPTER 1

16

between sending and receiving a message, and on deter-
mining bounds on the communication buffer sizes
required by an application to fulfill its timing constraints.
Optimization strategies are developed, aiming at synthe-
sizing a communication infrastructure that would guar-
antee the timing constraints of the application at the
same time with minimizing the system implementation
costs.

 — Chapter 9 (Schedulability-Driven Frame Packing for
Multi-Cluster Systems) addresses the issue of packing of
messages to frames in the case of TTP and CAN protocols.
We have updated our schedulability analysis presented
in Chapter 8 to take into account the details related to
frames, and we have proposed two optimization heuris-
tics that use the schedulability analysis as a driver
towards a frame configuration that leads to a schedulable
system.

 • Part V: Conclusion
 — Chapter 10 (Conclusions and Future Work) is the final

chapter of the thesis and presents our conclusions and
future work ideas.

All the approaches developed in the thesis have been evalu-
ated using an extensive set of applications generated for experi-
mental purposes. In addition, we also use throughout the thesis
a real-life case study in order to determine the relevance of the
research problems identified and to further evaluate the
approaches proposed. The case study, a vehicle cruise controller,
is presented in the next chapter.

17

Chapter 2
System-Level

Design and Modeling

THE MODELING AND design of embedded systems can be per-
formed at several abstraction levels. Gajsky [Gaj83] identifies
the following abstraction levels in the context of CAD tools for
VLSI:
 • Circuit level is the lowest level of abstraction. For example,

the hardware at this level is seen as transistors, capacitors,
resistors, etc., and differential equations are often used to
describe their functionality.

 • Logic level is next towards higher levels of abstraction. Here,
the functionality is represented as boolean logic (hence the
name, logic level), implemented in hardware using logic
gates and flip-flops.

 • At the register-transfer level the functionality is captured in
terms of register-transfer operations on ALUs, registers, mul-
tiplexers, etc.

 • The highest level of abstraction is the system level, where the
functionality is described using “system-level specification
formalisms” (in the case of VLSI design, these can be descrip-

CHAPTER 2

18

tion languages like VHDL, Verilog or SystemC) and the archi-
tecture is seen as building blocks consisting of processors,
memories, etc., interconnected using buses.

The research presented in this thesis is dealing with the
design issues at the system level of abstraction. Providing meth-
odologies, techniques and tools for system-level design is the
only solution to the increasing complexity of embedded systems,
and the designer’s productivity gap [Sem02]. The system-level
design methodology is presented in the next section. In this the-
sis, we place a special emphasis on an incremental design pro-
cess as outlined in Section 2.2.

At system level, we view the architectures as a set of heteroge-
neous interconnected networks, each network consisting of
nodes sharing the same communication channel. Each node has
a processor, a memory, a communication controller, and I/Os to
sensors and actuators. Also, the functionality is captured as a
set of interacting processes, modeled using a process network
formalism. The exact representation we use for modeling the
functionality at the system level is described in Section 2.3,
while the architectures considered are described in more detail
in Chapter 3.

2.1 System-Level Design
The aim of a design methodology is to coordinate the design
tasks such that the time-to-market is minimized, and the design
constraints are satisfied. System-level design is illustrated in
Figure 2.1 (adapted from [Ele02]). It emphasizes the design
tasks that happen before the hardware and software compo-
nents are definitively identified. According to the figure, which
groups the system-level design tasks and models inside the grey
rectangle, system-level design tasks take as input the specifica-
tion of the system and its requirements, and produces the hard-
ware and software models, which are later synthesized.

SYSTEM-LEVEL DESIGN AND MODELING

19

Figure 2.1: System-Level Design

System
specification

Software
model

Hardware
model

Software
generation

Hardware
synthesis

Software
blocks

Hardware
blocks

Prototype

Fabrication

System-level
design tasks

Other
lower-level

design tasks

System
specification

Software
model

Hardware
model

Software
generation

Hardware
synthesis

Software
blocks

Hardware
blocks

Prototype

Fabrication

System-level
design tasks

Other
lower-level

design tasks

CHAPTER 2

20

In the next sections we discuss some approaches to system-
level design, namely:

1. Traditional design methodology,
2. Hardware/software co-design, and
3. Function/architecture co-design and platform-based design.

2.1.1 TRADITIONAL DESIGN METHODOLOGY

This methodology is not a design methodology per se, but a set of
design approaches traditionally used in the industry.

Many organizations, including automotive manufacturers, are
used to designing and developing their systems following some
version of the waterfall model of system development [Wol01].
This means that the design process starts with a specification
and, based on this, several system-level design tasks are per-
formed manually, usually in an ad-hoc fashion. Then, the hard-
ware and software parts are developed independently, often by
different teams located far away from each other. Software code
is written, the hardware is synthesized and they are supposed to
integrate correctly from the first attempt. Simulation and test-
ing are done separately on hardware and software, respectively,
with very few integration tests.

If this design approach was appropriate when used for rela-
tively small systems produced in a well defined production
chain, it performs poorly for more complex systems, leading to
an increase in the time-to-market. There are several reasons for
this. It is very difficult, just based on the specification, to accu-
rately determine what system architecture is appropriate and
how the resources should be used. Also, a separate view on the
hardware and software design processes (which are dependent
on each other) leads to a poorly designed system, which often
has a poor performance because of the incomplete exploration of
the trade-offs between the software and hardware domains.

New design methodologies are needed in order to cope with
the increasing complexity of current systems.

SYSTEM-LEVEL DESIGN AND MODELING

21

2.1.2 HARDWARE/SOFTWARE CO-DESIGN

The main idea behind hardware/software co-design is to concur-
rently design (hence the term co-design) and develop the system,
delaying for as much as possible the partitioning of system func-
tionality into hardware and software components. Surveys
about hardware/software co-design can be found in [Mic96],
[Mic97], [Ern98], [Gaj95], [Sta97], [Wol94], [Wol03].

At the beginning, researchers proposing co-design approaches
made quite restrictive assumptions, and the goals were modest.
These approaches are not really system level, they actually
belong to the “other lower-level design tasks” cloud in
Figure 2.1. For example, several researchers have assumed a
simple specification in form of a computer program, and the
main goal was to obtain an as high as possible execution perfor-
mance within a given cost budget (acceleration). The architec-
ture considered consisted of a single processor together with an
ASIC used to accelerate parts of the functionality [Cho95a],
[Gup95], [Moo97]. In this context, the main problems were to
divide the functionality between the ASIC and the CPU (hard-
ware/software partitioning) [Axe96], [Ele97], [Ern93], [Gup93],
[Vah94], to automatically generate drivers and other compo-
nents related to communication (communication synthesis)
[Cho92], [Wal94] and to simulate and verify the resulting sys-
tem (co-simulation and co-verification) [Val95], [Val96].

However, today such restrictive assumptions are no longer
valid and the goals are much broader [Bol97], [Dav98], [Dav99],
[Dic98], [Lak99], [Ver96]:
 • The system specification is now assumed to be inherently

heterogeneous and complex. Several languages as well as
several models of computation can be found within a specifi-
cation.

 • The architectures are varied, ranging from distributed
embedded systems, in the automotive electronics area, to
systems on a chip used in telecommunications. The hard-

CHAPTER 2

22

ware architectures are heterogeneous, consisting of not only
programmable processors and ASICs, but also DSPs, FPGAs,
ASIPs, etc.

 • The goals include not only acceleration with minimal hard-
ware cost, but also issues related to the reuse of legacy hard-
ware and software subsystems, real-time constraints, quality
of service, fault tolerance and dependability, power consump-
tion, flexibility, time-to-market, etc.

2.1.3 FUNCTION/ARCHITECTURE CO-DESIGN

Several researchers [Tab00], [Lav99] have pointed out that most
of the hardware/software co-design approaches are not really
addressing the design tasks at system-level, but rather the
interaction between the hardware and software entities (the
“other lower-level design tasks” in Figure 2.1).

For this reason, a function/architecture co-design methodol-
ogy has been proposed [Kie97], [Lie99], [Tab00], [Lav99],
[Bal97], that addresses the design process before hardware/soft-
ware partitioning, seeing this move towards even higher
abstraction levels as the key to shortening design time and cop-
ing with complexity.

The function/architecture co-design uses a top-down synthesis
approach, where trade-offs are evaluated at a high level of
abstraction (see Figure 2.2, adapted from [Ele02]). The main
characteristic of this methodology is the use, at the same time
with the top-down synthesis, of a bottom-up evaluation of design
alternatives, without the need to perform a full synthesis of the
design. The approach to obtaining accurate evaluations is to use
an accurate modeling of the behavior and architecture (the
“Mapped and scheduled model” box in Figure 2.2), and to
develop analysis techniques that are able to derive estimates
and to formally verify properties relative to a certain design
alternative (the “Estimation” and “Simulation and verification”
boxes). The determined estimates and properties, together with

SYSTEM-LEVEL DESIGN AND MODELING

23

Modeling

System
specification

System
model

Mapping

Scheduling

System
architecture

Architecture
selection

Estimation

Mapped and
scheduled model

Software
model

Hardware
model

Software
generation

Hardware
synthesis

Software
blocks

Hardware
blocks

Simulation

Simulation

Prototype

Fabrication

Simulation
and verification

Simulation
and verification

Modeling

System
specification

System
model

Mapping

Scheduling

System
architecture

Architecture
selection

Estimation

Mapped and
scheduled model

Software
model

Hardware
model

Software
generation

Hardware
synthesis

Software
blocks

Hardware
blocks

Simulation

Simulation

Prototype

Fabrication

Simulation
and verification

Simulation
and verification

Figure 2.2: Function/Architecture Co-design

CHAPTER 2

24

user-specified constraints, are then used to drive the synthesis
process.

Thus, several architectures are evaluated to determine if they
are suited for the specified system functionality. There are two
extremes in the degrees of freedom available for choosing an
architecture. At one end, the architecture is already given, and
no modifications are possible. At the other end of the spectrum,
no constraints are imposed on the architecture selection, and the
synthesis task has to determine, from scratch, the best architec-
ture for the required functionality. These two situations are,
however, not common in practice. Usually, a hardware platform
is available, which can be parameterized (e.g., size of memory,
speed of the buses, etc.). In this case, the synthesis task is to
derive the parameters of the architecture such that the function-
ality of the system is successfully implemented. Once an archi-
tecture is determined and/or parameterized, the function/
architecture co-design continues with the mapping of functional-
ity onto the instantiated architecture.

In the next section we will present how such a hardware plat-
form can be determined.

2.1.4 PLATFORM-BASED DESIGN

As the complexity of the systems continues to increase, the
development time lengthens dramatically, and the manufactur-
ing costs become prohibitively high. To cope with this complex-
ity, it is necessary to reuse as much as possible at all levels of the
design process, and to work at higher and higher abstraction
levels.

One of the most important components of any design method-
ology is the definition of a system platform. Such a platform con-
sists of a hardware architecture together with software
components that will be used for several product versions, and
will be shared with other product lines, in the hope to reduce
costs and the time-to-market.

SYSTEM-LEVEL DESIGN AND MODELING

25

The authors in [Keu00] have proposed techniques for deriving
such a platform for a given family of applications. Their
approach can be used within any design methodology for deter-
mining a system platform that later on can be parameterized
and instantiated to a desired hardware architecture.

In Figure 2.3a (adapted from [Kie97] and [Ele02]), a platform
architecture is determined for a family of applications. The
applications are mapped and compiled on a platform architec-
ture, and the performance numbers are derived using simula-
tion. If the designer is satisfied with the performance of the
platform, the loop ends. The hardware platform resulted after
such a process can be viewed as a generic architecture that has
to be further optimized according to the requirements of a par-
ticular application.

Therefore, for a given application, the hardware platform has
to be instantiated, deciding on certain parameters, and lower
level details, in order to suit that particular application. In
Figure 2.3b, the search for a platform instance starts from a
platform architecture, and a given application. Then, the pro-
cess iterates similarly to Figure 2.3a, trying to synthesize a plat-
form instance that reduces the manufacturing costs and is able
to meet the constraints of the application.

In this thesis we concentrate on the following system-level
design tasks:

1. mapping,
2. scheduling, and
3. communication synthesis.

In addition, we consider these design tasks within an incre-
mental design process, as outlined in the next section.

CHAPTER 2

26

Mapping/
Compiling

Platform
architecture Applications

Simulation

Performance
numbers

Mapping/
Compiling

Platform
instance Application

Simulation

Performance
numbers

Platform
architecture

Mapping/
Compiling

Platform
architecture Applications

Simulation

Performance
numbers

Mapping/
Compiling

Platform
architecture Applications

Simulation

Performance
numbers

Mapping/
Compiling

Platform
instance Application

Simulation

Performance
numbers

Platform
architecture

Mapping/
Compiling

Platform
instance Application

Simulation

Performance
numbers

Platform
architecture

Figure 2.3: Platform-Based Design

a) Deriving a hardware platform

b) Instantiating a hardware platform
for a given application

SYSTEM-LEVEL DESIGN AND MODELING

27

2.2 Incremental Design Process
A characteristic of the research efforts concerning the design of
embedded systems is that authors concentrate on the design,
from scratch, of a new system optimized for a particular applica-
tion. For many application areas, however, such a situation is
extremely uncommon and only rarely appears in design prac-
tice. It is much more likely that one has to start from an already
existing system running a certain application and the design
problem is to implement new functionality (including also
upgrades to the existing one) on this system. In such a context it
is very important to operate no, or as few as possible, modifica-
tions to the already running application. The main reason for
this is to avoid unnecessarily large design and testing times.
Performing modifications on the (potentially large) existing
application increases design time and, even more, testing time
(instead of only testing the newly implemented functionality, the
old application, or at least a part of it, has also to be retested).

However, this is not the only aspect to be considered. Such an
incremental design process, in which a design is periodically
upgraded with new features, is going through several iterations.
Therefore, after new functionality has been introduced, the
resulting system has to be implemented such that additional
functionality, later to be mapped, can easily be accommodated.

In one recent paper, Haubelt et al. [Hau02] consider the
requirement of flexibility as a parameter during design space
exploration. However, their goal is not incremental design, but
the generation of an architecture which, at an acceptable cost, is
able to implement different applications or variants of a certain
application.

We illustrate such an incremental design process in
Figure 2.4. The product is implemented as a three processor sys-

CHAPTER 2

28

F
ig

u
re

 2
.4

:
In

cr
em

en
ta

l D
es

ig
n

 P
ro

ce
ss

E
xi

st
in

g
ap

pl
ic

at
io

ns
:

A
pp

lic
at

io
n

to

P
os

si
bl

e
fu

tu
re

Version N

Version N-1

Version N+1

ψ

be
 a

dd
ed

 to
th

e
sy

st
em

:
Γ c

ur
re

nt

ap
pl

ic
at

io
n

to
be

 a
dd

ed
:

Γ f
ut

ur
e

Im
p

le
m

en
t

Γ c
u

rr
en

t s
o

th
at

:
1.

 c
on

st
ra

in
ts

 o
n

 Γ
cu

rr
en

t a
re

 s
at

is
fi

ed
;

2.
 m

od
if

ic
at

io
n

s
to

 ψ
 a

re
 m

in
im

iz
ed

;
3.

 g
oo

d
ch

an
ce

 t
o

im
pl

em
en

t
Γ f

u
tu

re
.

SYSTEM-LEVEL DESIGN AND MODELING

29

tem and its version N–1 consists of the set ψ of two applications
(the processes belonging to these applications are represented as
white and black disks, respectively). At the current moment,
application Γcurrent is to be added to the system, resulting in ver-
sion N of the product. However, a new version, N+1, is very
likely to follow and this fact is to be considered during imple-
mentation of Γcurrent

1.
If it is not possible to map and schedule Γcurrent without

modifying the already running applications, we have to change
the scheduling and mapping of some applications in ψ. However,
even with serious modifications performed on ψ, it is still
possible that certain constraints are not satisfied. In this case
the hardware architecture has to be changed by, for example,
adding a new processor, and the mapping and scheduling
procedure for Γcurrent has to be restarted. In this thesis we do not
elaborate on the aspect of adding new resources to the
architecture, but will concentrate on the mapping and
scheduling aspects. Therefore, we will consider that a possible
mapping and scheduling of Γcurrent, which satisfies the imposed
constraints can be found (with minimizing the modification of
the already running applications), and this solution has to be
further improved in order to facilitate the implementation of
future applications.

2.3 Application Modeling
The functionality of the host system, into which the electronic
system is embedded, is normally described using a formalism
from that particular domain of application. For example, if the
host system is a vehicle, then its functionality is described in

1. The design process outlined here also applies when Γcurrent is a new ver-
sion of an application Γold ∈ ψ. In this case, all the processes and com-
munications belonging to Γold are eliminated from the running system
ψ, before starting the mapping and scheduling of Γcurrent.

CHAPTER 2

30

terms of control algorithms using differential equations, which
are modeling the behavior of the vehicle and its environment. At
the level of the embedded system which controls the host sys-
tem, viewed as the system level for us, the functionality is typi-
cally described as a set of functions, accepting certain inputs and
producing some output values.

There is a lot of research in the area of system modeling and
specification, and an impressive number of representations have
been proposed. An overview, classification and comparison of dif-
ferent design representations and modeling approaches is given
in [Edw97], [Edw00], [Lav99].

The scheduling and mapping design tasks addressed in this
thesis deal with sets of interacting processes. A process is a
sequence of computations (corresponding to several building
blocks in a programming language) which starts when all its
inputs are available. When it finishes executing, the process pro-
duces its output values. Researchers have used, for example,
dataflow process networks (also called task graphs, or process
graphs) [Lee95] to describe interacting processes, and have rep-
resented them using directed acyclic graphs, where a node is a
process and the directed arcs are dependencies between pro-
cesses.

One drawback of dataflow process graphs is that they are not
suitable to capture the control aspects of an application. For
example, it can happen that the execution of some processes can
also depend on conditions computed by previously executed pro-
cesses. By explicitly capturing the control flow in the model, a
more fine-tuned modeling and a tighter (less pessimistic) assign-
ment of execution times to processes is possible, compared to
traditional data-flow based approaches. Several researchers
have proposed extensions to the dataflow process graph model in
order to capture these control dependencies [Ele98a], [Thi99],
[Kla01].

SYSTEM-LEVEL DESIGN AND MODELING

31

In this thesis we use the conditional process graph (CPG)
[Ele98a], [Ele00] as an abstract model for representing the
behavior of the application, as it not only captures both dataflow
and the flow of control, but is also suitable for handling timing
aspects.

2.3.1 CONDITIONAL PROCESS GRAPH

We model an application Γ as a set of conditional process graphs
Gi ∈ Γ. A conditional process graph is an abstract representation
consisting of a directed, acyclic, polar graph G(V, ES, EC). Each
node Pi ∈ V represents one process. ES and EC are the sets of

D

C

P0

P6

P8

P9P10

P11

P2

P4

P3P14

P15

P1

P5

P7

P12

P13

C

D

3

8

30

2

4

2

2

330

3

4

38

1

3

1

1

1

1

1

Processor 1

Processor 2
Processor 3
Bus

Figure 2.5: A Conditional Process Graph Example

CHAPTER 2

32

simple and conditional edges, respectively. ES ∩ EC = and
ES ∪ EC = E, where E is the set of all edges. An edge eij ∈ E from
Pi to Pj indicates that the output of Pi is the input of Pj.

The graph is polar, which means that there are two nodes,
called source and sink, that conventionally represent the first
and last process. These nodes are introduced as dummy pro-
cesses, with zero execution time and no resources assigned, so
that all other nodes in the graph are successors of the source and
predecessors of the sink respectively.

A mapped conditional process graph, G(V*, ES*, EC*, M), is gen-
erated from a conditional process graph G(V, ES, EC) by inserting
additional processes (communication processes) on certain edges
and by mapping each process to a given processing element. The
mapping of processes Pi ∈ V* to processors and buses is given by
a function M: V* → PE, where PE = {pe1, pe2, ..., peNpe} is the set
of processing elements. PE = PP ∪ B, where PP is the set of pro-
grammable processors and B is the set of allocated buses. For
every process Pi, M(Pi) is the processing element to which Pi is
assigned for execution.

In the process graph depicted in Figure 2.5, P0 and P15 are the
source and sink nodes, respectively. The nodes denoted P1, P2, ...,
P14 are “ordinary” processes specified by the designer. They are
assigned to one of the three programmable processors, as indi-
cated by the shading in the figure. The rest of the nodes are so
called communication processes and they are represented in
Figure 2.5 as solid circles. They are introduced during the gener-
ation of the system representation for each connection which
links processes mapped to different processors, and model inter-
processor communication. All communications in Figure 2.5 are
performed on one bus.

An edge eij ∈ EC is a conditional edge (represented with thick
lines in Figure 2.5) and has an associated condition value. In
Figure 2.5 processes P1 and P7 have conditional edges at their
output.

∅

SYSTEM-LEVEL DESIGN AND MODELING

33

We call a node with conditional edges at its output a disjunction
node (and the corresponding process a disjunction process). A dis-
junction process has one associated condition, the value of which
it computes. Alternative paths starting from a disjunction node,
which correspond to complementary values of the condition, are
disjoint and they meet in a so called conjunction node (with the
corresponding process called conjunction process)1. In Figure 2.5,
circles representing conjunction and disjunction nodes are
depicted with thick borders. The alternative paths starting from
disjunction node P1, which computes condition C, meet in con-
junction node P5. We assume that conditions are independent
and alternatives starting from different processes cannot
depend on the same condition.

Execution Semantic

The conditional process graph has the following execution
semantic:

 • A process, that is not a conjunction process, can be activated
only after all its inputs have arrived.

 • A conjunction process can be activated after messages com-
ing on one of the alternative paths have arrived.

 • All processes issue their outputs when they terminate.
 • A boolean expression XPi

, called a guard, can be associated to
each node Pi in the graph. It represents the necessary condi-
tions for the respective process to be activated. XPi

 is not only
necessary but also sufficient for process Pi to be activated
during a given system execution. Thus, two nodes Pi and Pj,
where Pj is not a conjunction node, are connected by an edge
eij only if XPj

 → XPi
 (which means that XPi

 is true whenever
XPj

 is true). This avoids specifications in which a process is

1. If no process is specified on an alternative path, it is modeled by a con-
ditional edge from the disjunction to the corresponding conjunction node
(a communication process may be inserted on this edge at mapping).

CHAPTER 2

34

blocked even if its guard is true, because it waits for a mes-
sage from a process which will not be activated. If Pj is a con-
junction node, predecessor nodes Pi can be situated on
alternative paths corresponding to a condition.

 • Transmission on conditional edges takes place only if the
associated condition value is true and not, like on simple
edges, for each activation of the input process Pi.

 • We consider two possible execution environments for pro-
cesses: non-preemptive and preemptive:
 — In a non-preemptive environment a process cannot be

interrupted during its execution.
 — In a preemptive execution environment a higher priority

processes can interrupt the execution of lower priority
processes. Also, under certain circumstances, a lower pri-
ority process can block a higher priority process (e.g., it is
in its critical section), and we consider that the blocking
time is computed using the analysis from [Sha90] for the
priority ceiling protocol.

The above execution semantic is that of a so called single rate
system. It assumes that a node is executed at most once for each
activation of the system. If processes with different periods have
to be handled (in which case we consider that each process Pi has
an associated period Ti), this can be solved by generating several
instances of the processes and building a CPG which corresponds
to a set of processes as they occur within a time period that is
equal to the least common multiple of the periods of the involved
processes (see Figure 5.5 on page 113).

Throughout the thesis we will assume, without loss of gener-
ality, that all processes and messages belonging to a process
graph Gi have the same period Ti = TGi

which is the period of the
process graph.

SYSTEM-LEVEL DESIGN AND MODELING

35

Specifying Timing Information

Each process Pi, assigned to a programmable processor M(Pi), is
characterized by a worst-case execution time Ci, a period Ti, and
priority priorityPi

1.
The communication processes (messages), modeling inter-pro-

cessor communication, have an associated execution time Ci,j

(where Pi is the sender and Pj the receiver process) equal to the
corresponding transmission time. For each message m we know
its size Sm. A message is sent once in every nm invocations of the
sending process, with a period Tm = nmTi inherited from the
sender process Pi

2.
As mentioned, we the consider execution times of processes, as

well as the communication times, to be given. In Figure 2.5 they
are depicted to the right of each node. In the case of hard real-
time systems this will, typically, be worst case execution times
and their estimation has been extensively discussed in the liter-
ature [Eng99], [Ern97], [Li95], [Lun99], [Mal97], [Wol02].

If we consider the activation time of the source process as a ref-
erence, the activation time of the sink process is the delay of the
system at a certain execution. This delay has to be, in the worst
case, smaller than a certain imposed deadline DGi on the process
graph Gi. Throughout the thesis we assume that the deadline is
smaller than the period, DGi ≤ TGi. However, in Section 6.5.5, we
will show how this assumption can be relaxed.

Deadlines can also be placed locally on processes. Release
times of some processes as well as multiple deadlines can be eas-
ily modeled by inserting dummy nodes between certain processes
and the source or the sink node respectively. These dummy
nodes represent processes with a certain execution time but
which are not allocated to any processing element.

1. In the case of a static cyclic scheduling environment no priority is
needed to be attached to the process.

2. In the case of an event-driven communication protocol (e.g., CAN) mes-
sages also have an associated priority.

CHAPTER 2

36

2.3.2 INCREMENTAL DESIGN: MODELING THE ALREADY
IMPLEMENTED APPLICATIONS

Let us consider an incremental design process as outlined in
Section 2.2 (Figure 2.4). If the initial attempt to schedule and
map Γcurrent does not succeed, we have to modify the schedule
and, possibly, the mapping of some already running applica-
tions, belonging to ψ, in the hope to find a valid solution for
Γcurrent.

The goal is to find that minimal modification to the existing
system which leads to a correct implementation of Γcurrent. In our
context, such a minimal modification means remapping and/or
rescheduling a subset Ω of the old applications, Ω ⊆ ψ, so that
the total cost of re-implementing Ω is minimized.

Remapping and/or rescheduling a certain application Γi ∈ ψ
can trigger the need to also perform modifications to one or sev-
eral other applications because of, for example, the dependencies
between processes belonging to these applications. In order to
capture such dependencies between the applications in ψ, as
well as their modification costs, we have introduced a represen-
tation called the application graph.

We represent a set of applications as a directed acyclic graph
A(V, E), where each node Γi ∈ V represents an application. An
edge eij ∈ E from Γi to Γj indicates that any modification to Γi

would trigger the need to also remap and/or reschedule Γj,
because of certain interactions between the applications1. Each
application in the graph has an associated attribute specifying if
that particular application is allowed to be modified or not (in
which case, it is called “frozen”). To those nodes Γi ∈ V represent-
ing modifiable applications, the designer has associated a cost
RΓi

 of re-implementing Γi. Given a subset of applications Ω ⊆ ψ,
the total cost of modifying the applications in Ω is:

1. If a set of applications have a circular dependence, such that the modi-
fication of any one implies the remapping of all the others in that set,
the set will be represented as a single node in the graph.

SYSTEM-LEVEL DESIGN AND MODELING

37

(2.1)

Modifications of an already running application can only be
performed if the process graphs corresponding to that applica-
tion, as well as the related deadlines (which have to be satisfied
also after re-mapping and re-scheduling), are available. How-
ever, this is not always the case, and in such situations that par-
ticular application has to be considered frozen.

Example 2.1: In Figure 2.6 we present the graph corre-
sponding to a set of ten applications. Applications Γ6, Γ8, Γ9
and Γ10, depicted in black, are frozen: no modifications are
possible to them. The rest of the applications have the modi-
fication cost RΓi

 depicted on their left. For example, Γ7 can be
remapped with a cost of 20. If Γ4 is to be re-implemented,
this also requires the modification of Γ7, with a total cost of
90. In the case of Γ5, although not frozen, no remapping or
rescheduling is possible as it would trigger the need to mod-
ify Γ6, which is frozen.

As mentioned before, to each application Γi ∈ V the designer
has associated a cost RΓi

 of re-implementing Γi. Such a cost can
typically be expressed in man-hours needed to perform retesting
of Γi and other tasks connected to the remapping and reschedul-

R Ω() RΓi

Γi Ω∈
∑=

Figure 2.6: Modeling Already Implemented Applications

Γ1 Γ2

Γ3

Γ4 Γ5

Γ6

Γ7
Γ8 Γ9 Γ10

150 70

50

70 50

20

CHAPTER 2

38

ing of the application. How to concretely perform the estimation
of the modification cost related to an application is beyond the
topic of this thesis. Several approaches to cost estimation for dif-
ferent phases of the software life-cycle have been elaborated and
are available in the literature [Deb97], [Rag02]. One of the most
influential software cost models is the Constructive Cost Model
(COCOMO) [Boe00]. COCOMO is at the core of tools such as REVIC

[REV94] and its newer version SoftEST [Sof97], which can pro-
duce cost estimations not only for the total development but also
for testing, integration, or modification related retesting of
embedded software. The results of such estimations can be used
by the designer as the cost metrics assigned to the nodes of an
application graph.

In general, it can be the case that several alternative costs are
associated to a certain application, depending on the particular
modification performed. Thus, for example, we can have a cer-
tain cost if processes are only rescheduled, and another one if
they are also remapped on an alternative node. For different
modification alternatives considered during design space explo-
ration, the corresponding modification cost has to be selected. In
order to keep the discussion reasonably simple, we present the
case with one single modification cost associated to an applica-
tion. However, the generalization for several alternative modifi-
cation costs is straightforward.

2.3.3 APPLICATION EXAMPLE

A typical safety critical application with hard real-time con-
straints, to be implemented on distributed architecture, is a vehi-
cle cruise controller (CC). We have considered a CC system derived
from a requirement specification provided by the industry.

The CC described in this specification delivers the following
functionality:

SYSTEM-LEVEL DESIGN AND MODELING

39

 • It maintains a constant speed for speeds over 35 km/h and
under 200 km/h,

 • offers an interface (buttons) to increase or decrease the refer-
ence speed, and

 • is able to resume its operation at the previous reference
speed.

 • The CC operation is suspended when the driver presses the
brake pedal.

It is assumed that the CC will operate in a distributed environ-
ment consisting of several interconnected nodes. There are five
nodes which functionally interact with the CC system: the Anti
Blocking System (ABS), the Transmission Control Module (TCM),
the Engine Control Module (ECM), the Electronic Throttle Mod-
ule (ETM), and the Central Electronic Module (CEM).

We have considered two hardware architectures for the imple-
mentation of the cruise controller, presented in Figure 2.7. In
Figure 2.7a, all nodes are connected to a TTP bus, while in
Figure 2.7b, we have a two cluster system. In Figure 2.7b, the
ABS and TCM nodes are part of the time-triggered cluster, that
uses the TTP as the communication protocol, and the ECM and
ETM nodes are on the event-triggered cluster, which uses CAN.
The CEM node is the gateway, connected to both networks.

We have modeled the specification of the CC system using a
conditional process graph that consists of 32 processes, and
includes two conditions. The first condition, calculated by the
source node, decides if the CC is in operation or not (ON or OFF),
while the second condition is used to decide, in the case the CC is
operational, if the car should speedup or break when trying to
reach the reference speed.

The model is presented in Figure 2.8 without assuming any
mapping. However, when discussing the scheduling tasks
addressed in this thesis, the mapping is considered as already
given. For those cases, we will use the mapping depicted in
Figure 2.9. In addition to the nodes representing processes, in
Figure 2.9 we have also introduced nodes representing the com-

CHAPTER 2

40

ABS TCM ECM ETM ...

Figure 2.7: Two Hardware Architectures for
the Cruise Controller

ABS TCM

CEM

...

...ECM ETM

TTP bus

TTP bus

CAN bus

a) Hardware architecture: five nodes connected by a TTP bus

b) Hardware architecture: a two cluster system

TT Cluster

ET Cluster

CEM

SYSTEM-LEVEL DESIGN AND MODELING

41

Figure 2.8: The Cruise Controller Model

ON

OFF

Speed Up Speed Down

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P14

P12

P13

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P28

P29

P30

P31

P27

P32

CHAPTER 2

42

Figure 2.9: The Mapping of the Cruise Controller Model

CEM
ABS
ETM
ECM
TCM

Mapping to nodes ON

OFF

Speed Up Speed Down

12 ms

7

10

5

18 15

14 6

3
8

5

10

6

7

11

5

8

11

5

5

6

0 ms

9

17

5

12

10

7

6

4 bytes

5

8

4

16

16

8

8

8
8

8

8

8

4

4

16

16

16

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P14

P12

P13

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P28

P29

P30

P31

P27

P32

SYSTEM-LEVEL DESIGN AND MODELING

43

munication between processes mapped on different processors,
depicted with black dots (see Section 2.3.1). The message sizes
are depicted to the left of each message.

The cruise controller example presented in this section will be
used in the following chapters for evaluating our research
approaches.

45

Chapter 3
Communication-Intensive

Heterogeneous
Real-Time Systems

DEPENDING ON THE particular application, real-time systems
can be implemented as uniprocessor, multiprocessor, or distrib-
uted systems. Systems can be hard or soft, event-driven or time-
driven, fault-tolerant, autonomous, etc. A good classification of
real-time systems is given in [Kop97a].

In this thesis we concentrate on safety-critical hard real-time
applications distributed across communication-intensive hetero-
geneous real-time systems, where communication has an impor-
tant impact on the application.

This chapter describes the hardware and software architec-
tures we consider in this thesis for the implementation of a dis-
tributed real-time system. The general hardware platform is
introduced in Section 3.2. We particularize this platform for
time-driven systems in Section 3.3, present event-driven sys-
tems in Section 3.4, and show how the two can be combined into
multi-cluster systems in the last section.

CHAPTER 3

46

3.1 Time-Triggered vs. Event-Triggered
According to [Kop97a] a trigger is “an event that causes the start
of some action, e.g., the execution of a task or the transmission of
a message.” Two different approaches to the design of real-time
systems can be identified, based on the triggering mechanisms
for the processing and communication:

 • Time-Triggered (TT)
In the time-triggered approach activities are initiated at pre-
determined points in time. In a distributed time-triggered
system it is assumed that the clocks of all nodes are synchro-
nized to provide a global notion of time. Time-triggered sys-
tems are typically implemented using non-preemptive static
cyclic scheduling, where the process activation or message
communication is done based on a schedule table built off-
line.

 • Event-Triggered (ET)
In the event-triggered approach activities happen when a
significant change of state occurs. Event-triggered systems
are typically implemented using preemptive priority-based
scheduling, where, as response to an event, the appropriate
process is invoked to service it.

There has been a long debate in the real-time and embedded
systems communities concerning the advantages of each
approach [Aud93], [Kop97a], [Xu93]. Several aspects have been
considered in favour of one or the other approach, such as flexi-
bility, predictability, jitter control, processor utilization, testabil-
ity, etc.

An interesting comparison of the ET and TT approaches, from a
more industrial, in particular automotive, perspective, can be
found in [Lön99]. The conclusion there is that one has to choose
the right approach, depending on the particularities of the appli-
cation.

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

47

The analysis and synthesis techniques presented in this the-
sis are applied to three types of systems. The hardware architec-
tures for these three types of systems are particularizations of
the generic hardware platform presented in the next section.

1. Time-Driven Systems
In time-driven systems processes are time-triggered. The de-
tails of the hardware and software architectures for time-
driven systems are presented in Section 3.3. The mapping,
scheduling and communication synthesis methods for time-
driven applications are presented in Part II of this thesis.

2. Event-Driven Systems
In this type of systems processes are event-triggered. The
hardware and software architectures for event-driven sys-
tems are detailed in Section 3.4. Part III presents our analy-
sis and synthesis methods for event-driven systems.

3. Multi-Cluster Systems
The systems presented at points one and two are either TT or
ET. However, for certain applications, the two approaches
can be used together, some processes being TT and others ET.
Moreover, efficient implementation of new, highly sophisti-
cated automotive applications, entails the use of TT process
sets together with ET ones implemented on top of complex
distributed architectures.

One approach to the design of such systems, is to allow ET

and TT processes to share the same processor as well as stat-
ic (TT) and dynamic (ET) communications to share the same
bus. Bus sharing of TT and ET messages is supported by pro-
tocols which support both static and dynamic communication
[Fle02]. Traian Pop et al. [Pop02b] have addressed the prob-
lem of timing analysis for such systems.

When several event-driven scheduling policies are used in
a heterogeneous system, another approach to the verification
of timing properties is to use the technique presented in
[Ric02], [Ric03] which couples the analysis of local schedul-

CHAPTER 3

48

ing strategies via an event interface model.
In this thesis, we consider systems designed as intercon-

nected clusters of processors. Each such cluster can be either
TT or ET. Depending on their particular nature, certain parts
of an application can be mapped on processors belonging to
an ET cluster or a TT cluster.

The hardware and software architectures for such multi-
cluster systems are presented in Section 3.5. The analysis
and synthesis methods for multi-cluster systems are out-
lined in Part IV of the thesis.

3.2 The Hardware Platform
We consider, in the most general case, a hardware platform com-
posed of several networks, interconnected with each other (see
Figure 3.1). Each network has its own communication protocol,
and they communicate via a gateway which is a node connected
to both networks. The architecture can contain several such het-
erogeneous networks, having different types of topologies.

...

...

...
I/O Interface

Comm. Controller

CPU

RAM

ROM

ASIC

...

Sensors/Actuators

I/O Interface

Comm. Controller

CPU

RAM

ROM

ASIC

...

Sensors/Actuators

I/O Interface

Comm. Controller

CPU

RAM

ROM

ASIC

...

Sensors/Actuators

Figure 3.1: Communication-Intensive Heterogeneous
Real-Time Systems

Node

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

49

A network is composed of several different types of hardware
components, called nodes. Every node consists of a communica-
tion controller, a CPU, a RAM, a ROM and an I/O interface to sen-
sors and actuators. A node can also have an ASIC in order to
accelerate parts of its functionality. The communication control-
lers implement the protocol services, and run independently of
the node’s CPU.

In order to provide accurate analysis techniques, we need to
know the details of the communication protocols used to connect
the components of the architecture.

There are a very large number of communication protocols
available for embedded systems. However, only a few of them
are suitable for safety-critical applications where predictability
is mandatory [Rus01]. A survey and comparison of communica-
tion protocol for safety-critical embedded systems is available in
[Rus01].

The duality between event-triggered and time-triggered
approaches discussed in Section 3.1 is reflected also at the level
of the communication infrastructure, where communication
activities can be triggered either dynamically, in response to an
event, or statically, at predetermined moments in time.

So, on the one hand, there are protocols that schedule the mes-
sages statically based on a schedule table like, for example, the
SAFEbus [Hoy92] and SPIDER [Min00] protocols for the avionics
industry, and the Time-Triggered Protocol (TTP) [Kop03]
indented for the automotive industry, etc. Out of these, Rushby
[Rus01] concludes that TTP “is unique in being used for both
automobile applications, where volume manufacture leads to
very low prices, and aircraft, where a mature tradition of design
and certification for flight-critical electronics provides strong
scrutiny of arguments for safety.”

On the other hand, there are several communication protocols
where message scheduling is performed dynamically, such as
Byteflight [Ber00] introduced by BMW for automotive applica-
tions, Controller Area Network (CAN) [Bos91] used in a large

CHAPTER 3

50

number of application areas including automotive electronics,
LonWorks [Ech03] and Profibus [Pro03] for real-time systems in
general, etc. Out of these, CAN is the most well known and wide-
spread event-driven communication protocol in the area of dis-
tributed embedded real-time systems.

However, there is also a hybrid type of communication proto-
cols, like the FlexRay protocol [Fle02], that allows the sharing of
the bus by event-driven and time-driven messages.

In this thesis we have decided to use two fundamentally dif-
ferent communication protocols for the communication channel:
the time triggered protocol, which is a time-driven protocol, and
the controller area network protocol, which is an event-driven
protocol. A detailed comparison of TTP and CAN is provided in
[Kop01].

3.2.1 THE TIME-TRIGGERED PROTOCOL

The time-triggered protocol [Kop03] was designed for distrib-
uted real-time applications that require predictability and reli-
ability (e.g., drive-by-wire [XbW98]). It integrates all the
services necessary for fault-tolerant real-time systems. TTP ser-
vices of importance to our problems are: message transport with
acknowledgment and predictable low latency, clock synchroniza-
tion within the microsecond range and rapid mode changes.

The communication channel is a broadcast channel, so a mes-
sage sent by a node is received by all the other nodes. The bus
access scheme is time-division multiple-access (TDMA)
(Figure 3.2). Each node Ni can transmit only during a predeter-
mined time interval, the so called TDMA slot Si. In such a slot, a
node can send several messages packaged in a frame. A
sequence of slots corresponding to all the nodes in the architec-
ture is called a TDMA round. A node can have only one slot in a
TDMA round. Several TDMA rounds can be combined together in a
cycle that is repeated periodically. The sequence and length of

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

51

the slots are the same for all the TDMA rounds. However, the
length and contents of the frames may differ.

Every node has a TTP controller that implements the protocol
services, and runs independently of the node’s CPU. Communica-
tion with the CPU is performed through a so called message base
interface (MBI) which is usually implemented as a dual ported
RAM (depicted in Figure 3.5 on page 54).

The TDMA access scheme is imposed by a so called message
descriptor list (MEDL) that is located in every TTP controller. The
MEDL basically contains the time when a frame has to be sent or
received, the address of the frame in the MBI, and the length of
the frame. The MEDL serves as a schedule table for the TTP con-
troller which has to know when to send or receive a frame to or
from the communication channel.

The TTP controller provides each CPU with a timer interrupt
based on a local clock, synchronized with the local clocks of the
other nodes. The clock synchronization is done by comparing the
a priori known time of arrival of a frame with the observed
arrival time. By applying a clock synchronization algorithm, TTP

provides a global time-base of known precision, without any
overhead on the communication.

TDMA Round
Cycle of two rounds

Slot

S4 S2 S1 S3 S4 S2 S1 S3

Frames

Figure 3.2: TTP Bus Access Scheme

CHAPTER 3

52

There are two types of frames in the TTP. The initialization
frames, or I-frames, which are needed for the initialization of a
node, and the normal frames, or N-frames, which are the data
frames containing, in their data field, the application messages.
A TTP data frame (Figure 3.3) consists of the following fields:
start of frame bit (SOF), control field, a data field of up to 8 bytes
containing one or more messages, and a cyclic redundancy check
(CRC) field. Frames are delimited by the inter-frame delimiter
(IFD, 3 bits). Hence, the data efficiency for such a frame that car-
ries 8 bytes of application data, i.e., the percentage of transmit-
ted bits which are the actual data bits needed by the application,
is 69.5% (64 data bits transmitted in a 92 bits frame). Note that
no identifier bits are necessary, as the TTP controllers know from
their MEDL what frame to expect at a given point in time.

3.2.2 THE CONTROLLER AREA NETWORK PROTOCOL

The controller area network bus [Bos91] is a priority bus that
employs a collision avoidance mechanism, whereby the node
that transmits the frame with the highest priority wins the con-

S
O
F

I
F
D

Control field, 8 bits
– 1 initialization bit
– 3 mode change bits
– 4 ACK bits

Data field, up to 8 bytes

CRC field, 16 bits

Figure 3.3: TTP Frame Configuration

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

53

tention. Frame priorities are unique and are encoded in the
frame identifiers, which are the first bits to be transmitted on
the bus.

In the case of CAN, there are four frame types: data frame,
remote frame, error frame, and overload frame. We are mainly
interested in the structure of the data frame, depicted in
Figure 3.4. A data frame contains seven fields: SOF, arbitration
field that encodes the 11 bit frame identifier, a control field, a
data field up to 8 bytes, a CRC field, an acknowledgement (ACK)
field, and an end of frame field (EOF), hence having a data effi-
ciency of 57.6%.

3.3 Time-Driven Systems
The first type of systems considered in the thesis are time-
driven systems, in which processes are activated according to a
time-triggered policy. Typically, in a time-driven system, mes-
sages are transmitted using a time-driven communication proto-
col such as the TTP, while the scheduling of processes is
performed using static cyclic scheduling.

The hardware architecture consists of one single network,
composed of a set of nodes interconnected using the TTP. The

S
O
F

I
F
D

Data field, up to 8 bytes

Arbitration field, 12 bits
– 11 identifier bits
– 1 retransmission bit

CRC field,
– 4 data length

– 2 reserved bits

Control field, 6 bits ACK field,
2 bits16 bits

EOF field,
7 bits

Figure 3.4: CAN Frame Configuration

code bits

CHAPTER 3

54

F
ig

u
re

 3
.5

:
A

 M
es

sa
ge

 P
as

si
n

g
E

xa
m

pl
e

fo
r

T
im

e-
D

ri
ve

n
 S

ys
te

m
s

P
1

P
2

R
T-

K
er

n
el M

B
I

C
P

U

T
T

P
 C

on
tr

ol
le

r

P
3

R
T-

K
er

n
el M

B
I

C
P

U

T
T

P
 C

on
tr

ol
le

r

S
2

S
1

S
2

t m
2

m
1

m
1

m
2

m
2

m
2

m
2

N
1

N
2 R
ou

n
d

2

P
1

m
1

m
2

P
2

P
3

a)
 A

pp
li

ca
ti

on

b
)

M
es

sa
ge

 P
as

si
n

g
E

xa
m

pl
e

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

55

main component of the software architecture is a real-time ker-
nel that runs on top of each node.

The kernel running as part of the software architecture on
each node has a schedule table. This schedule table contains all
the information needed to take decisions on activation of pro-
cesses and transmission of messages, on that particular node.

In order to run a predictable hard real-time application, the
overhead of the kernel and the worst case administrative over-
head (WCAO) of every system call has to be determined. Having a
time-triggered system, all the activity is derived from the pro-
gression of time which means that there are no other interrupts
except for the timer interrupt.

Several activities, like polling of the I/O or diagnostics, take
place directly in the timer interrupt routine. The overhead due
to this routine is expressed as the utilization factor Ut. Ut repre-
sents a fraction of the CPU power utilized by the timer interrupt
routine, and has an influence on the execution times of the pro-
cesses.

We also have to take into account the overheads for process
activation and message passing. For process activation we con-
sider an overhead δPA. The message passing mechanism is illus-
trated in Figure 3.5, where we have three processes, P1, P2 and
P3. P1 and P2 are mapped to node N1 that transmits in slot S1,
and P3 is mapped to node N2 that transmits in slot S2. Message
m1 is transmitted between P1 and P2, which are on the same
node, while message m2 is transmitted from P1 to P3 between the
two nodes. We consider that each process has its own memory
locations for the messages it sends or receives and that the
addresses of the memory locations are known to the kernel
through the schedule table.

P1 is activated according to the schedule table, and when it
finishes it calls the send kernel function in order to send m1, and
then m2. Based on the schedule table, the kernel copies m1 from
the corresponding memory location of P1 to the memory location
of P2. The time needed for this operation represents the WCAO δS

CHAPTER 3

56

for sending a message between processes located on the same
node. When P2 will be activated, it will find the message in the
right location. According to our scheduling policy, whenever a
receiving process needs a message, the message is already
placed in the corresponding memory location. Thus, there is no
overhead on the receiving side, for messages exchanged on the
same node.

Message m2 has to be sent from node N1 to node N2. At a cer-
tain time, known from the schedule table, the kernel transfers
m2 to the TTP controller by packing m2 into a frame in the MBI.
The WCAO of this function is δKS. Later on, the TTP controller
knows from its MEDL when it has to take the frame from the MBI,
in order to broadcast it on the bus. In our example, the timing
information in the schedule table of the kernel and the MEDL is
determined in such a way that the broadcasting of the frame is
done in the slot S1 of Round 2. The TTP controller of node N2

knows from its MEDL that it has to read a frame from slot S1 of
Round 2 and to transfer it into the MBI. The kernel in node N2

will read the message m2 from the MBI, with a corresponding
WCAO of δKR

1. When P3 will be activated based on the local sched-
ule table of node N2, it will already have m2 in its memory loca-
tion.

3.4 Event-Driven Systems
The second type of systems considered in the thesis are the
event-driven systems in which processes are managed according
to an event-driven policy.

The hardware architecture consists of one single network,
composed of a set of nodes interconnected using a communica-
tion channel.

1. The overheads δS, δKS and δKR depend on the length of the transferred
message; in order to simplify the presentation this aspect is not dis-
cussed further.

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

57

The scheduling of processes is performed using fixed-priority
preemptive scheduling. A natural mapping of event-driven mes-
sages would be on a bus implementing an event-triggered proto-
col at the data-link layer, such as the CAN bus. Such a solution
has been considered in literature, for example in [Tin95].

However, considering preemptive priority based scheduling at
the process level, with time triggered static scheduling at the
communication level can be the right solution under several cir-
cumstances [Lön99]. Moreover, a communication protocol like
the time-triggered protocol provides a global time base, and
improves fault-tolerance and predictability.

Therefore, in Part III of this thesis we will consider that mes-
sages produced by event-triggered processes are transmitted
using the time-triggered communication protocol, and we have
developed four message passing policies for transmitting event-
triggered messages over a time-triggered bus (see Section 6.4).
However, for the event-triggered clusters of a multi-cluster sys-
tem addressed in Part IV, we will consider that the communica-
tions are performed using an event-triggered protocol such as
the CAN protocol.

As the main component of the software architecture, we have
a real-time kernel running on the CPU of each node, which has a
scheduler as one of its main components. This scheduler decides
on activation of processes, based on their priorities.

As in the previous section, the overhead of the kernel and the
worst case administrative overhead (WCAO) of every system call
have to be determined. Our schedulability analysis takes into
account these overheads, and also the overheads due to the mes-
sage passing.

The message passing mechanism is illustrated in Figure 3.6,
where we have three processes, P1, P2, and P3. As in the example
illustrated in Figure 3.5, P1 and P2 are mapped to node N1 that
transmits in slot S1, and P3 is mapped to node N2 that transmits
in slot S2. Message m1 is transmitted between P1 and P2 that are

CHAPTER 3

58

P
1

P
2

R
T

K

M
B

I

C
P

U

T
T

P
 C

on
tr

ol
le

r

P
3 M

B
I

C
P

U

T
T

P
 C

on
tr

ol
le

r

S
2

S
1

S
2

m
1

m
1

m
2

m
2

F
ig

u
re

 3
.6

:
A

 M
es

sa
ge

 P
as

si
n

g
E

xa
m

pl
e

fo
r

E
ve

n
t-

D
ri

ve
n

 S
ys

te
m

s

N
1

N
2

R
ou

n
d

2

T

Out

m
2

R
T

K

D

Out m
2

m
2

P
1

m
1

m
2

P
2

P
3

a)
 A

pp
li

ca
ti

on

b
)

M
es

sa
ge

 P
as

si
n

g
E

xa
m

pl
e

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

59

on the same node, while message m2 is transmitted from P1 to P3

between the two nodes.
Messages between processes located on the same processor

are passed through shared protected objects. The overhead for
their communication is accounted for by the blocking factor,
using the analysis from [Sha90] for the priority ceiling protocol.

Message m2 has to be sent from node N1 to node N2. Hence,
after m2 is produced by P1, it will be placed into an outgoing mes-
sage queue, called Out. The access to the queue is guarded by a
priority-ceiling semaphore. A so called transfer process (denoted
with T in Figure 3.6) moves the message from the Out queue
into the MBI.

How the message queue is organized and how the message
transfer process selects the particular messages and assembles
them into a frame, depends on the particular approach chosen
for message scheduling (see Section 6.4). The message transfer
process is activated at certain a priori known moments by the
scheduler, in order to perform the message transfer. These acti-
vation times are stored in a message handling time table (MHTT)
available to the real-time kernel in each node. Both the MEDL

and the MHTT are generated off-line as result of the schedulabil-
ity analysis and optimization which will be discussed later. The
MEDL imposes the times when the TTP controller of a certain
node has to move frames from the MBI to the communication
channel. The MHTT contains the times when messages have to be
transferred by the message transfer process from the Out queue
into the MBI, in order to be broadcast by the TTP controller. As
result of this synchronization, the activation times in the MHTT

are directly related to those in the MEDL and the first table
results directly from the second one.

It is easy to observe that we have the most favorable situation
when, at a certain activation, the message transfer process finds
in the Out queue all the “expected” messages which then can be
packed into the next following frame to be sent by the TTP con-
troller. However, application processes are not statically sched-

CHAPTER 3

60

uled and availability of messages in the Out queue can not be
guaranteed at fixed times. Worst case situations have to be con-
sidered, as will be shown in Section 6.4.

Let us come back to Figure 3.6. There we assumed a context in
which the broadcasting of the frame containing message m2 is
done in the slot S1 of Round 2. The TTP controller of node N2

knows from its MEDL that it has to read a frame from slot S1 of
Round 2 and to transfer it into its MBI. In order to synchronize
with the TTP controller and to read the frame from the MBI, the
scheduler on node N2 will activate, based on its local MHTT, a so
called delivery process, denoted with D in Figure 3.6. The deliv-
ery process takes the frame from the MBI and extracts the mes-
sages from it. For the case when a message is split into several
packets, sent over several TDMA rounds, we consider that a mes-
sage has arrived at the destination node after all its correspond-
ing packets have arrived. When m2 has arrived, the delivery
process copies it to process P3 which will be activated. Activation
times for the delivery process are fixed in the MHTT just as
explained earlier for the message transfer process.

The number of activations of the message transfer and deliv-
ery processes depends on the number of frames transferred, and
they are taken into account in our analysis, as well as the delay
implied by the propagation on the communication bus.

3.5 Multi-Cluster Systems
Our multi-cluster systems consist of several clusters, intercon-
nected by gateways (Figure 3.7 depicts a two-cluster example). A
cluster is composed of nodes which share a broadcast communi-
cation channel.

In a time-triggered cluster (TTC), processes and messages are
scheduled according to a static cyclic policy, with the bus imple-
menting the TTP. On an event-triggered cluster (ETC), the pro-
cesses are scheduled according to a priority based preemptive

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

61

approach, while messages are transmitted using the priority-
based CAN protocol.

The critical element of such an architecture is the gateway,
which is a node connected to both types of clusters (hence having
two communication controllers, for TTP and CAN), and is respon-
sible for the inter-cluster routing of real-time traffic.

Although in this thesis we consider only a two cluster system,
as the on in Figure 3.7, the approaches presented can be easily
extended to cluster configurations where there are several ETCs
and TTCs interconnected by gateways.

A real-time kernel is responsible for activation of processes
and transmission of messages on each node. On a TTC, the pro-
cesses are activated based on the local schedule tables, and mes-
sages are transmitted according to the MEDL. On an ETC, we
have a scheduler that decides on activation of ready processes
and transmission of messages, based on their priorities.

In Figure 3.8 we illustrate our message passing mechanism.
Here we concentrate on the communication between processes
located on different clusters. For message passing details within

Figure 3.7: A Two-Cluster System Example

...

...

TT Cluster

ET Cluster

Gateway
TTP Network

CAN Network

TTP Controller CAN Controller

CHAPTER 3

62

a TTC the reader is directed to Section 3.3, while the infrastruc-
ture needed for communications on an ETC has been detailed in
[Tin95].

Let us consider the example in Figure 3.8, where we have an
application consisting of four processes, mapped on two clusters.
Processes P1 and P4 are mapped on node N1 of the TTC, while P2

and P3 are mapped on node N2 of the ETC. Process P1 sends mes-
sages m1 and m2 to processes P2 and P3, respectively, while P2

and P3 send messages m3 and m4 to P4.
The transmission of messages from the TTC to the ETC takes

place in the following way (see Figure 3.8). P1, which is statically
scheduled, is activated according to the schedule table, and
when it finishes it calls the send kernel function in order to send
m1 and m2, indicated in the figure by number (1). Messages m1

and m2 have to be sent from node N1 to node N2. At a certain
time, known from the schedule table, the kernel transfers m1

and m2 to the TTP controller by packing them into a frame in the
MBI. Later on, the TTP controller knows from its MEDL when it
has to take the frame from the MBI, in order to broadcast it on
the bus. In our example, the timing information in the schedule
table of the kernel and the MEDL is determined in such a way
that the broadcasting of the frame is done in the slot S1 of
Round 2 (2). The TTP controller of the gateway node NG knows
from its MEDL that it has to read a frame from slot S1 of Round 2
and to transfer it into its MBI (3). Invoked periodically, having
the highest priority on node NG, and with a period which guar-
antees that no messages are lost, the gateway process T copies
messages m1 and m2 from the MBI to the TTP-to-CAN priority-
ordered message queue OutCAN (4). The highest priority mes-
sage in the queue, in our case m1, will tentatively be broadcast
on the CAN bus (5). Whenever message m1 will be the highest
priority message on the CAN bus, it will successfully be broadcast
and will be received by the interested nodes, in our case node N2

(6). The CAN communication controller of node N2 receiving m1

will copy it in the transfer buffer between the controller and the

COMMUNICATION-INTENSIVE HETEROGENEOUS REAL-TIME SYSTEMS

63

F
ig

u
re

 3
.8

:
A

 M
es

sa
ge

 P
as

si
n

g
E

xa
m

pl
e

fo
r

M
u

lt
i-

C
lu

st
er

 S
ys

te
m

s

P
1

P
2

P
3

P
4

m
1

m
2

m
3

m
4

b
)

M
es

sa
ge

 P
as

si
n

g
E

xa
m

pl
e

a)
 A

pp
li

ca
ti

on

P
1

P
4

M
B

I

C
P

U

T
T

P
 c

on
tr

ol
le

r

C
P

U

T
T

P
 C

on
tr

ol
le

r
S

G
S

1
S

G

m
1

N
1

N
G

R
ou

n
d

2

m
2

T

OutCANC
A

N
 c

on
tr

ol
le

r

OutTTP

P
3

P
2

C
P

U

N
2

C
A

N
 c

on
tr

ol
le

r

D

OutN2

S
1

1

2
3456

7

8

9

10

11

12 13

14

15

T
T

P
 b

us

C
A

N
 b

us

T
T

P
 b

u
s

sc
h

ed
u

le

m
3

m
3m

3

CHAPTER 3

64

CPU, and raise an interrupt which will activate a delivery pro-
cess, responsible to activate the corresponding receiving process,
in our case P2, and hand over message m1 that finally arrives at
the destination (7).

Message m3 (depicted in Figure 3.8 as a hashed rectangle)
sent by process P2 from the ETC will be transmitted to process P4

on the TTC. The transmission starts when P2 calls its send func-
tion and enqueues m3 in the priority-ordered OutN2

 queue (8).
When m3 has the highest priority on the bus, it will be removed
from the queue (9) and broadcast on the CAN bus (10), arriving at
the gateway’s CAN controller where it raises an interrupt. Based
on this interrupt, the gateway transfer process T is activated,
and m3 is placed in the OutTTP FIFO queue (11). The gateway
node NG is only able to broadcast on the TTC in its corresponding
slot SG of the TDMA rounds circulating on the TTP bus. According
to the MEDL of the gateway, a set of messages not exceeding
sizeSG

 of the slot SG will be removed from the front of the OutTTP

queue in every round, and packed in the SG slot (12). Once the
frame is broadcast (13) it will arrive at node N1 (14), where all
the messages in the frame will be copied in the input buffers of
the destination processes (15). Process P4 is activated according
to the schedule table, which has to be constructed such that it
accounts for the worst-case communication delay of message m3,
bounded by the analysis in Section 8.2.1, and so when P4 starts
executing it will find m3 in its input buffer.

This chapter has presented the hardware architectures con-
sidered. In part two of the thesis, composed of chapters 4 and 5
we will address time-driven systems, in the third part, chapters
6 and 7, event-driven systems are considered, and in the fourth
part, chapters 8 and 9, we discuss issues related to multi-cluster
systems.

 PART II
Time-Driven Systems

67

Chapter 4
Scheduling and

Bus Access Optimization for
Time-Driven Systems

IN THIS AND in the following chapter we consider time-driven
distributed real-time systems that use the time-triggered proto-
col for their communication infrastructure, as described in
Section 3.3. In this case, both the activation of processes and the
transmission of messages are done based on the progression of
time. The applications are modeled as a set of conditional pro-
cess graphs, as presented in Section 2.3.1.

Our goal in this chapter is to generate a static schedule and to
optimize the parameters of the communication protocol, such
that the worst-case delay by which the system completes execu-
tion is minimized.

The chapter starts by presenting an approach to static sched-
uling with control and data dependencies for distributed real-
time systems [Dob98], [Ele98a], [Ele00]. The approach considers
a simplified communication model in which the execution time
of the communication processes depends only on the amount of

CHAPTER 4

68

data exchanged by the processes engaged in the communication.
The communication processes are treated exactly as ordinary
processes during scheduling, and the bus is modeled similar to a
programmable processor that can “execute” one communication
at a time as soon as the communication becomes “ready”.

We propose in this chapter several extensions to this basic
approach:

 • scheduling of messages using a realistic communication
model based on the time-triggered protocol (Section 4.3.1);

 • a new priority function for list scheduling that uses knowl-
edge about the bus access scheme in order to improve the
schedule quality (Section 4.3.2);

 • optimization strategies for the synthesis of parameters of the
communication protocol, aimed at improving the schedule
quality (Section 4.4).

4.1 Background
Static cyclic scheduling of a set of data dependent software pro-
cesses on a multiprocessor architecture has been intensively
researched [Kop97a], [Xu00].

Several approaches are based on list scheduling heuristics
using different priority criteria [Cof72], [Deo98], [Jor97],
[Kwo96], [Wu90] or on branch-and-bound algorithms [Kas84].
These approaches are based on the assumption that a number of
identical processors are available to which processes are pro-
gressively assigned as the static schedule is elaborated. Such an
assumption is obviously not acceptable for distributed embed-
ded systems which are heterogeneous by nature. In [Jor97] a list
scheduling based approach is extended to handle heterogeneous
architectures. Scheduling is performed by progressively assign-
ing tasks to the allocated processors with the goal to minimize
the length of the schedule. The proposed algorithm handles only
processors which execute one single process at a time (not typi-

SCHEDULING AND BUS ACCESS OPTIMIZATION

69

cal for hardware) and the resulting partitioning does not take
into consideration any design constraints.

In [Ben96], [Pra92] static scheduling and partitioning of pro-
cesses, and allocation of system components, are formulated as a
mixed integer linear programming (MILP) problem. A disadvan-
tage of this approach is the complexity of solving the MILP model.
The size of such a model grows quickly with the number of pro-
cesses and allocated resources. In [Kuc97] a formulation using
constraint logic programming has been proposed for similar
problems.

In all the previous approaches process interaction is only in
terms of dataflow. However, when including control dependen-
cies significant improvements in the quality of the resulting
schedules can be obtained [Ele98a], [Ele00], [Kuc01]. Section 4.2
presents in more detail related research on the static scheduling
for systems with control and data dependencies that is used as a
starting point for our work.

It has been claimed [Xu93] that static cyclic scheduling is the
only approach that can provide solutions to applications that
exhibit data dependencies. However, advances in the area of
fixed priority preemptive scheduling show that such applica-
tions can also be handled with other scheduling strategies
[Aud93], [Tin94b], [Pal98], [Pal99].

Currently, more and more real-time systems are used in phys-
ically distributed environments and have to be implemented on
distributed architectures in order to meet reliability, functional,
and performance constraints. However, researchers have often
ignored or very much simplified aspects concerning the commu-
nication infrastructure.

One typical approach is to consider communication processes
as processes with a given execution time (depending on the
amount of information exchanged) and to schedule them as any
other process, without considering issues like communication
protocol, bus arbitration, packing of messages, clock synchroni-
zation, etc. These aspects are, however, essential in the context

CHAPTER 4

70

of safety-critical distributed real-time applications and one of
our objectives is to develop a strategy which takes them into con-
sideration for process scheduling.

Many efforts dedicated to communication synthesis have con-
centrated on the synthesis support for the communication infra-
structure but without considering hard real-time constraints
and system level scheduling aspects [Cho95b], [Dav95], [Knu99],
[Nar94]. Lower level communication synthesis aspects under
timing constraints have been addressed in [Ort98], [Knu99].

4.2 Scheduling with Control and Data
Dependencies

The problem which is discussed in this section can be formulated
as follows: Given an application distributed on a time-driven
system (Section 3.3), modeled as a set of mapped conditional
process graphs (Section 2.3.1), we are interested to generated a
static schedule such that the worst-case delay by which the sys-
tem completes execution is minimized.

According to our application model, some processes can only be
activated if certain conditions, computed by previously executed
processes, are fulfilled. Hence, process scheduling is complicated
since at a given activation of the system, only a certain subset of
the total amount of processes is executed and this subset differs
from one activation to the other.

As the values of the conditions are unpredictable, the decision
on which process to activate and at which time has to be taken
without knowing which values the conditions will later get. On
the other side, at a certain moment during execution, when the
values of some conditions are already known, they have to be
used in order to take the best possible decisions on when and
which process to activate. Heuristic algorithms have to be devel-
oped to produce a schedule of the processes such that the worst

SCHEDULING AND BUS ACCESS OPTIMIZATION

71

case delay is as small as possible. One such algorithm will be
presented in Section 4.2.1.

The output produced by their scheduling algorithm is a sched-
ule table that contains all the information needed by a distrib-
uted run time scheduler to take decisions on activation of
processes. It is considered that, during execution, a very simple
non-preemptive scheduler located in each processing element
decides on process and communication activation depending on
the actual values of conditions. Only one part of the table has to
be stored in each processor, namely, the part concerning deci-
sions which are taken by the corresponding scheduler.

Example 4.1: Under these assumptions, Table 4.1 presents
a possible schedule (produced by the algorithm in Figure 4.1)
for the conditional process graph in Figure 2.5 on page 31. In
Table 4.1 there is one row for each “ordinary” or communica-
tion process, which contains activation times corresponding
to different values of conditions. Each column in the table is
headed by a logical expression constructed as a conjunction
of condition values. Activation times in a given column repre-
sent starting times of the processes when the respective
expression is true.

According to the schedule in Table 4.1 process P1 is acti-
vated unconditionally at the time 0, given in the first column
of the table. Activation of the rest of the processes, in a cer-
tain execution cycle, depends on the values of the conditions,
which are unpredictable. For example, process P11 has to be
activated at t = 44 if C ∧ D is true and at t = 52 if C ∧ D holds.

At a certain moment during the execution, when the values of
some conditions are already known, they have to be used in
order to take the best possible decisions on when and which pro-
cess to activate. Therefore, after the termination of a process
that produces a condition (disjunction process), the value of the
condition is broadcast from the corresponding processor to all

CHAPTER 4

72

Table 4.1: Schedule Table for the Process Graph in Figure 2.5

Process True C C∧D C∧D C C∧D C∧D

P1 0

P2 5

P3 14 14

P4 45 45

P5 51 50 55 47

P6 3 3

P7 7 7

P8 9 9

P9 11 11

P10 13 13

P11 44 52

P12 47 9 55 9

P13 48 13 56 11

P14 14 9

P1,2 4

P4,5 48 47

P2,3 13 13

P3,4 44 44

P12,13 47 10 55

P8,10 12 12

P10,11 43 43

C 3 11 9

D 11 9 11 9

SCHEDULING AND BUS ACCESS OPTIMIZATION

73

other processors. This broadcast is scheduled as soon as possible
on the communication channel, and is considered together with
the scheduling of the messages.

To produce a deterministic behavior, which is correct for any
combination of conditions, the table has to fulfill several require-
ments:

1. No process will be activated if, for a given execution, the con-
ditions required for its activation are not fulfilled.

2. Activation times have to be uniquely determined by the con-
ditions.

3. Activation of a process Pi at a certain time t has to depend
only on condition values which are determined at the respec-
tive moment t and are known to the processing element
which executes Pi.

4.2.1 LIST SCHEDULING BASED ALGORITHM

Optimal scheduling has been proven to be an NP-complete prob-
lem [Ull75] in even simpler contexts than those characteristic to
distributed systems represented as CPGs. Hence, it is essential
to develop heuristics which produce good quality results in a
reasonable time.

In [Dob98], [Ele98a], [Ele00] the authors concentrate on
developing a scheduling algorithm for systems with both control
and data dependencies, modeled using the conditional process
graph. As the starting point for our improved scheduling tech-
nique that is tailored for time-triggered embedded systems we
consider the list scheduling based algorithm in [Dob98], [Ele00]
presented, in a simplified form, in Figure 4.1.

List scheduling heuristics [Ele98b], [Ele00] are based on pri-
ority lists from which processes are extracted in order to be
scheduled at certain moments. In the algorithm presented in
Figure 4.1, there is such a list, ReadyList, which contains the pro-
cesses eligible to be activated on the corresponding processor at
time CurrentTime. These are processes which have not yet been

CHAPTER 4

74

scheduled but have all predecessors already scheduled and ter-
minated.

The ListScheduling function is recursive and calls itself for each
disjunction node in order to separately schedule the nodes in the
true branch, and those in the false branch, respectively (lines 10
and 13 in Figure 4.1). Thus, the alternative paths are not acti-
vated simultaneously and resource sharing is correctly achieved
(for details on how the algorithm fulfills the three requirements
on the schedule table, identified earlier, we refer to [Ele00]).

An essential component of a list scheduling heuristic is the
priority function used to solve conflicts between ready processes.
As can be observed in Figure 4.1, the highest priority process

Figure 4.1: List Scheduling Based Algorithm for CPGs

ListScheduling(CurrentTime, ReadyList, KnownConditions)
1 repeat
2 Update(ReadyList)
3 for each processing element PE do
4 if PE is free at CurrentTime then
5 Pi = GetReadyProcess(ReadyList)
6 if there exists a Pi then
7 Insert(Pi, ScheduleTable, CurrentTime, KnownConds)
8 if Pi is a disjunction process then
9 Ci = condition calculated by Pi
10 ListScheduling(CurrentTime,
11 ReadyList ∪ ready nodes from the true branch,
12 KnownConditions ∪ true Ci)
13 ListScheduling(CurrentTime,
14 ReadyList ∪ ready nodes from the false branch,
15 KnownConditions ∪ false Ci)
16 end if
17 end if
18 end if
19 end for
20 CurrentTime = earliest time when a scheduled process terminates
21 until all processes of this alternative path are scheduled
end ListScheduling

SCHEDULING AND BUS ACCESS OPTIMIZATION

75

will be extracted by function GetReadyProcess from the ReadyList

in order to be scheduled (line 5).

4.2.2 PCP PRIORITY FUNCTION

Priorities for list scheduling very often are based on the critical
path (CP) from the respective process to the sink node. Thus, for CP

scheduling, the priority assigned to a process Pi will be the maxi-
mal execution time from the current node to the sink:

, (4.1)

where πik is the kth path from node Pi to the sink node.
Considering the particularities of our problem, significant

improvements of the resulting schedule can be obtained, without
any penalty in scheduling time, by making use of the available
information on process allocation [Ele98b].

Let us consider the graph in Figure 4.2 and suppose that the
list scheduling algorithm has to decide between scheduling pro-
cess PA or PB which are both ready to be scheduled on the same
programmable processor or bus pei. In Figure 4.2 we depicted only
the critical path from PA and PB to the sink node. Let us consider
that PX is the last successor of PA on the critical path such that all
processes from PA to PX are assigned to the same processing ele-
ment pei. The same holds for PY relative to PB. Times tA and tB

are the total execution time of the chain of processes from PA to
PX and from PB to PY, respectively, following the critical paths.
Times λA and λB are the total execution times of the processes on
the rest of the two critical paths. Thus, considering Equation 4.1
we have the following critical paths for PA and PB, respectively:

lPA
 = tA + λA, lPB

 = tB + λB.

However, the algorithm proposed in [Ele98b] does not use the
length of these critical paths as a priority. The policy in [Ele98b]

lPi
max

k
CPj

Pj πik∈
∑=

CHAPTER 4

76

is based on the estimation of a lower bound L on the total delay,
taking into consideration that the two chains of processes PA –
PX and PB – PY are executed on the same processor. LPA and LPB
are the lower bounds on the delay if PA and PB, respectively, are
scheduled first:

LPA
 = max(T_current + tA + λA, T_current + tA + tB + λB),

LPB
 = max(T_current + tB + λB, T_current + tB + tA + λA).

The alternative that offers the perspective of the shorter delay
L = min(LPA, LPB) is selected. It can be observed that if λA > λB

then LPA < LPB, which means that we have to schedule PA first so
that L = LPA; similarly if λB > λA then LPB < LPA, and we have to
schedule PB first in order to get L = LPB.

Figure 4.2: Delay Estimation for PCP Scheduling

PX PY

PA PB

tA tB

λA

P0

λB
PN

SCHEDULING AND BUS ACCESS OPTIMIZATION

77

4.3 Scheduling for Time-Driven Systems
In the previous sections we were interested to derive a static
schedule table such that the worst-case delay of an application,
modeled as conditional process graphs, is minimized. In this sec-
tion, we propose several extensions to the scheduling algorithm
briefly described in Section 4.2. The extensions consider a real-
istic communication and execution infrastructure, and include
aspects of the communication protocol in the optimization pro-
cess.

As an input to our problem we consider a safety-critical appli-
cation modeled as a set of conditional process graphs, see
Section 2.3.1. The architecture of the system is given as
described in Section 3.3. Each process of the application is
mapped on a processor. The worst-case execution time for each
process is known, as well as the length Smi of each message.

We are interested to derive the worst case delay on the system
execution time, so that this delay is as small as possible, and to
synthesize the local schedule tables for each node, as well as the
MEDL for the TTP controllers, which guarantee this delay.

Considering the concrete definition of our problem, which
takes into account the details of the communication protocol, the
communication time is no longer dependent only on the length of
the message, as assumed in the previous section. Hence, if the
message is sent between two processes mapped onto different
nodes, the message has to be scheduled according to the TTP pro-
tocol. Several messages can be packaged together in the data
field of a frame. The number of messages that can be packed
depends on the slot length corresponding to the node. The effec-
tive time spent by a message mi on the bus is , where

 is the length of the slot Si and s is the transmission speed of
the channel. Therefore, the communication time does not
depend on the bit length Smi of the message mi, but on the slot
length corresponding to the node sending mi.

Cmi
bSi

s⁄=
SSi

Cmi

CHAPTER 4

78

Example 4.2: The important impact of the communication
parameters on the performance of the application is illus-
trated in Figure 4.3 by means of a simple example. In
Figure 4.3d we have a process graph consisting of four pro-
cesses P1 to P4 and four messages m1 to m4. The architecture
consists of two nodes interconnected by a TTP channel. The
first node N1 transmits on the slot S1 of the TDMA round and
the second node N2 transmits on the slot S2. Processes P1
and P4 are mapped on node N1, while processes P2 and P3 are
mapped on node N2.

With the TDMA configuration in Figure 4.3a, where the slot
S2 is scheduled first and slot S1 is second, we have a result-
ing schedule length of 24 ms. However, if we swap the two
slots inside the TDMA round without changing their lengths,
we can improve the schedule by 2 ms, as seen on Figure 4.3b.

Furthermore, if we have the TDMA configuration in
Figure 4.3c where slot S1 is first, slot S2 is second and we
increase the slot lengths so that the slots can accommodate
both of the messages generated on the same node, we obtain
a schedule length of 20 ms which is optimal.

However, increasing the length of slots does not necessar-
ily improve a schedule, as it delays the communication of mes-
sages generated by other nodes.

In the next two sections our goal is to synthesize the local
schedule table of each node and the MEDL of the TTP controller
for a given order of slots in the TDMA round and given slot
lengths. The ordering of slots and the optimization of slot
lengths will be discussed in Section 4.4.

4.3.1 SCHEDULING OF MESSAGES WITH THE TTP

Given a certain bus access scheme, which means a given order-
ing of the slots in the TDMA round and fixed slot lengths, a CPG

has to be scheduled with the goal to minimize the worst case

SCHEDULING AND BUS ACCESS OPTIMIZATION

79

F
ig

u
re

 4
.3

:
S

ta
ti

c
C

yc
li

c
S

ch
ed

u
li

n
g

E
xa

m
pl

es
 w

it
h

 t
h

e
T

T
P

P
1

P
2

P
3

P
4

m
1

m
2

m
3

m
4

m
1

m
2

m
3

m
4

m
1

m
2

m
3

m
4

m
1

m
2

m
3

m
4

P
2

P
3

P
2

P
3

P
2

P
3

P
1

P
4

P
1

P
4

P
1

S
2

S
1 S

2
S

1

S
2

S
1

R
ou

n
d

1
R

ou
n

d
2

R
ou

n
d

3
R

ou
n

d
4

R
ou

n
d

5

R
ou

n
d

1
R

ou
n

d
2

R
ou

n
d

3
R

ou
n

d
4

R
ou

n
d

1
R

ou
n

d
2

R
ou

n
d

3

a)
 S

ch
ed

u
le

 le
n

gt
h

of
 2

4
m

s

b
)

S
ch

ed
u

le
 le

n
gt

h
of

 2
2

m
s

c)
 S

ch
ed

u
le

 le
n

gt
h

 o
f

20
 m

s

d
)

A
pp

li
ca

ti
on

P
4

T
T

P
T

T
P

N
1

N
2

e)
 A

rc
h

it
ec

tu
re

N
1

N
2

T
T

P
 b

u
s

N
1

N
2

T
T

P
 b

u
s

N
1

N
2

T
T

P
 b

u
s

CHAPTER 4

80

execution delay. This can be performed using the algorithm
ListScheduling (Figure 4.1) presented in Section 4.2.1. Two aspects
have to be discussed here: the planning of messages in predeter-
mined slots and the impact of this communication strategy on
the priority assignment.

The function ScheduleMessage in Figure 4.4 is called in order
to plan the communication of a message m, with length Sm, gen-
erated on Nodem and which is ready to be transmitted at
TimeReady. The ScheduleMessage function is called immediately
following line five in Figure 4.1, considering the processing ele-
ment PE as the bus, Pi as the message m (produced with a corre-
sponding GetReadyMessage), and with TimeReady = CurrentTime.

ScheduleMessage returns the earliest round and the corre-
sponding slot (the slot corresponding to Nodem) which can host
the message. In Figure 4.4 RoundLength is the length of a TDMA

round expressed in time units (in Figure 4.5, for example,
RoundLength = 18 ms). The first round after TimeReady is the ini-

Figure 4.4: The ScheduleMessage Function

ScheduleMessage (TimeReady, Sm, Nodem)
1 -- the slot in which the message has to be sent
2 Slot=the slot assigned to Nodem
3 -- the first round which could be a candidate
4 Round =
5 -- is the right slot in this round already gone?
6 if TimeReady – Round * RoundLength > startSlot then
7 -- if yes, take the next round
8 Round = Round + 1
9 end if
10 -- is enough space left in the slot for the message?
11 while Sm > SSlot – Soccupied do
12 -- if not, take the next round
13 Round = Round + 1
14 end while
15 -- return the right round and slot
16 return (Round, Slot)
end ScheduleMessage

TimeReady RoundLength⁄

SCHEDULING AND BUS ACCESS OPTIMIZATION

81

tial candidate to be considered (line 4). For this round, however,
it can be too late to catch the corresponding slot, in which case
the next round is selected, lines 5–9. When a candidate round is
selected we have to check, in line 11, that there is enough space
left in the slot for our message (Soccupied represents the total num-
ber of bits occupied by messages already scheduled in the
respective slot of that round). If no space is left, the communica-
tion has to be delayed for another round (line 13).

With this message scheduling scheme, the algorithm in
Figure 4.1 will generate correct schedules for a TTP based archi-
tecture, with guaranteed worst-case execution delays. However,
the quality of the schedules can be much improved by adapting
the priority assignment scheme so that particularities of the
communication protocol are taken into consideration.

4.3.2 IMPROVED PRIORITY FUNCTION

For the scheduling algorithm outlined previously we initially
used the Partial Critical Path (PCP) priority function presented
in Section 4.2.2. As discussed before, PCP uses as a priority crite-
rion the length of that part of the critical path corresponding to a
process Pi which starts with the first successor of Pi that is
assigned to a processor different from the processor running Pi.
The PCP priority function is statically computed once at the
beginning of the scheduling procedure.

However, considering the concrete definition of our problem,
significant improvements of the resulting schedule can be
obtained by including knowledge of the bus access scheme into
the priority function. This new priority function will be used by
the GetReadyProcess (Figure 4.1) in order to decide which process
to select from the list of ready process.

Example 4.3: Let us consider the graph in Figure 4.5c, and
suppose that the list scheduling algorithm has to decide
whether to schedule process P1 or P2 which are both ready to
be scheduled on the same programmable processor. The

CHAPTER 4

82

F
ig

u
re

 4
.5

:
P

ri
or

it
y

F
u

n
ct

io
n

 E
xa

m
pl

e

T
T

P
T

T
P

N
1

N
2

d
)

A
rc

h
it

ec
tu

re

N
1

N
2

T
T

P
 b

u
s

m

P
2

P
3

P
1

S
2=

8
S

1=
10

R
ou

n
d

1
R

ou
n

d
2

a)
 S

ch
ed

u
le

 le
n

gt
h

 o
f

40
 m

s

m

P
1

R
ou

n
d

1
R

ou
n

d
2

b
)

S
ch

ed
u

le
 le

n
gt

h
 o

f
36

 m
s

P
2

P
3

S
1=

10
S

2=
8

P
4

P
0

P
1

P
2

P
4m

c)
 A

pp
li

ca
ti

on

P
3

16

8

8
6

4
P

4

N
1

N
2

T
T

P
 b

u
s

SCHEDULING AND BUS ACCESS OPTIMIZATION

83

worst-case execution time of the processes is depicted on the
right side of the respective node and is expressed in ms. The
architecture consists of two nodes interconnected by a TTP
channel. Processes P1 and P2 are mapped on node N1, while
processes P3 and P4 are mapped on node N2. Node N1 trans-
mits in slot S1 of the TDMA round and N2 transmits in slot S2.
Slot S1 has a length of 10 ms while slot S2 has a length of 8
ms. For simplicity we suppose that there is no message
transferred between P1 and P3. The PCP (see Section 4.1.2)
assigns a higher priority to P1 because it has a partial criti-
cal path of 12, starting from P3, longer than the partial criti-
cal path of P2 which is 10 and starts from m. This results in a
schedule length of 40 ms as depicted in Figure 4.5a. On the
other hand, if we schedule P2 first, the resulting schedule,
depicted in Figure 4.5b, is of only 36 ms.

This apparent anomaly is due to the fact that the way we
have computed PCP priorities, considering message commu-
nication as a simple activity of delay 6ms, is not realistic in
the context of a TDMA protocol. Let us consider the particular
TDMA configuration in Figure 4.4 and suppose that the
scheduler has to decide at t = 0, which one of the processes P1
or P2 to schedule. If P2 is scheduled, the message is ready to
be transmitted at t' = 8. Based on a computation similar to
that used in Figure 4.5, it follows that message m will be
placed in round 1 = 1, and it arrives in time to get slot
S1 of that round (TimeReady = 8 < startS1

= 10). Thus, m
arrives at tarr = 18, which means a delay relative to t' = 8
(when the message was ready) of δ = 10. This is the delay
that should be considered for computing the partial critical
path of P2, which now results in δ + tP4

= 14 (longer than the
one corresponding to P1).

1. The operator is the ceiling operator, which returns the smallest
integer greater than or equal to x.

8 18⁄

x

CHAPTER 4

84

The obvious conclusion is that priority estimation has to be
based on message planning with the TDMA scheme. Such an esti-
mation, however, cannot be performed statically, before schedul-
ing. If we take the same example in Figure 4.5, but consider that
the priority based decision is taken by the scheduler at t = 5, m
will be ready at t' = 13. This is too late for m to get into slot S1 of
Round 1. The message arrives with Round 2 at tarr = 36. This
leads to a delay due to the message passing of δ = 36 – 13 = 23,
different from the one computed above.

We introduce, therefore, a new priority function, the Modified
PCP (MPCP), which is computed during scheduling, whenever sev-
eral processes are in competition to be scheduled on the same
resource. Similar to PCP, the priority metric is the length of that
portion of the critical path corresponding to a process Pi which
starts with the first successor of Pi that is assigned to a proces-
sor different from M(Pi). The critical path estimation starts with
time t at which the processes in competition are ready to be
scheduled on the available resource. During the partial tra-
versal of the graph the delay introduced by a certain node Pj is
estimated as follows:

The term t' is the time when the node generating the message
terminates (and the message is ready); tarr is the time when the
slot to which the message is supposed to be assigned has
arrived. The slot is determined like in Figure 4.4, but without
taking into consideration space limitations in slots.

Thus, the priority function MPCP has to be dynamically deter-
mined during the scheduling algorithm for each ready process,
every time the GetReadyProcess function is activated in order to
select a process from the ReadyList. The computation of λ, used in
MPCP similarly to the PCP case (see Section 4.2.2), is performed

tPj, if Pj is not a message passing

tarr – t', if Pj is a message passing
δPj=

SCHEDULING AND BUS ACCESS OPTIMIZATION

85

inside the GetReadyProcess function and involves a partial tra-
versal of the graph, as presented in Figure 4.6.

As the experimental results (Section 4.5) show, using MPCP

instead of PCP for the TTP based architecture results in an impor-
tant improvement of the quality of generated schedules, only
with a slight increase in scheduling time.

4.4 Bus Access Optimization
In the previous sections we have shown how the algorithm
ListScheduling can produce an efficient schedule for a CPG, given a
certain TDMA bus access scheme. However, as shown in

Figure 4.6: The Lambda Function

Lambda(lambda, CurrentProcess)
1 if CurrentProcess is a message then
2 slot = slot of node sending CurrentProcess
3 round = lambda / RoundLength
4 if lambda – RoundLength * round > start of slot in round then
5 round = next round
6 end if
7 while not message fits in the slot of round do
8 round = next round
9 end while
10 lambda = round * RoundLength + start of slot in round + length of slot
11 else
12 lambda = lambda + WCET of CurrentProcess
13 end if
14 if lambda > MaxLambda then
15 MaxLambda = lambda
16 end if
17 for each successor of CurrentProcess do
18 Lambda(lambda, successor)
19 end for
20 return MaxLambda
end Lambda

CHAPTER 4

86

Figure 4.3 on page 79, both the ordering of slots and the slot
lengths strongly influence the worst-case execution delay of the
system.

In this section, we first present a heuristic which, based on a
greedy approach, determines an ordering of slots and their
lengths so that the worst-case delay corresponding to a certain
CPG is as small as possible. Then, we present an algorithm based
on a simulated annealing strategy, which finds that bus configu-
ration which leads to the near-optimal delay for a CPG.

4.4.1 GREEDY APPROACHES

Figure 4.7 presents a greedy heuristic that starts with deter-
mining an initial solution, the so called “straightforward” one,
which assigns in order nodes to the slots (NodeSi

= Ni) and fixes
the slot length lengthSi to the minimal allowed value, which is
equal to the length of the largest message generated by a process
assigned to NodeSi (lines 1–5).

The next step of the algorithm starts with the first slot and
tries to find the node which, when transmitting in this slot, will
minimize the worst case delay of the system, as produced by
ListScheduling. Simultaneously with searching for the right node
to be assigned to the slot, the algorithm looks for the optimal slot
length (lines 12–18). Once a node was selected for the first slot
and a slot length fixed (line 23), the algorithm continues with
the next slots, trying to assign nodes (and to fix slot lengths)
from those nodes which have not yet been assigned.

When calculating the length of a certain slot, a first alterna-
tive could be to try all the slot lengths SS allowed by the protocol.
Such an approach starts with the minimum slot length deter-
mined by the largest message to be sent from the candidate
node, and it continues incrementing with the smallest data unit
(e.g., 2 bits) up to the largest slot length determined by the max-
imum allowed data field in a TTP frame (e.g., 32 bits, depending

SCHEDULING AND BUS ACCESS OPTIMIZATION

87

on the controller implementation). We call this alternative
OptimizeAccess1.

A second alternative, OptimizeAccess2, is based on a feedback
from the scheduling algorithm which recommends slot sizes to
be tried out. Before starting the actual optimization process for
the bus access scheme, a scheduling of the straightforward solu-
tion (determined in lines 1–5) is performed which generates the
recommended slot lengths. These lengths are produced by the
ScheduleMessage function (Figure 4.4), whenever a new round
has to be selected because of lack of space in the current slot. In
such a case the slot length which would be needed in order to
accommodate the new message is added to the list of recom-

Figure 4.7: Optimization of the Bus Access Scheme

OptimizeAccess
1 -- creates the initial, straightforward solution
2 for i = 1 to NrSlot do
3 NodeS = Ni
4 lengthS = MinLengthSi
5 end for
6 -- over all slots
7 for i = 1 to NrSlot do
8 -- over all slots which have not yet been allocated
9 -- a node and slot length
10 for j = i to NrSlot do
11 swap values (NodeSi, lengthSi) with (NodeSj, lengthSj)
12 -- initially, lengthSi has the minimal allowed value
13 for all slot lengths SS, larger than lengthSi

 do
14 lengthS = SS
15 ListScheduling(...)
16 remember BestSolution = (NodeSi

, lengthSi
),

17 with the smallest δmax produced by ListScheduling
18 end for
19 swap back values (NodeSi, lengthSi) with (NodeSj, lengthSj)
20 to the state before entering the for cycle
21 end for
22 -- slot Si gets a node allocated and a length fixed
23 Bind (NodeSi

, lengthSi
) = BestSolution

24 end for
end OptimizeAccess

CHAPTER 4

88

mended lengths for the respective slot. With this alternative, the
optimization algorithm in Figure 4.7 only selects among the rec-
ommended lengths when searching for the right dimension of a
certain slot (line 13).

4.4.2 SIMULATED ANNEALING

The second algorithm we have developed is based on a simulated
annealing (SA) strategy, described in detail in Appendix A.

The greedy strategy constructs the solution by progressively
selecting the best candidate in terms of the schedule length pro-
duced by the function ListScheduling. Unlike the greedy strategy,
SA will try to escape from a local optimum by randomly choosing
a neighboring solution, see Figure A.1 on page 282 in
Appendix A.

The neighbors of the current solution are obtained by a per-
mutation of the slots in the TDMA round and/or by increasing/
decreasing the slot lengths. We generate the new solution by
either randomly swapping two slots (with a probability 0.3) and/
or by increasing/decreasing with the smallest data unit the
length of a randomly selected slot (with a probability 0.7). These
probabilities have been determined experimentally.

For graphs with 160 and less processes we were able to run an
exhaustive search that found the optimal solutions. For the rest
of the graph dimensions, we performed very long and expensive
runs with the SA algorithm, and the best solution ever produced
has been considered as the optimum for the further experi-
ments. Based on further experiments we have determined the
parameters of the SA algorithm so that the optimization time is
reduced as much as possible but the optimal result is still pro-
duced (see Appendix A for the details on these parameters). For
example, for the graphs with 320 nodes, the initial temperature
TI is 500, the temperature length parameter TL is 400 and the
cooling ratio ε is 0.97. The algorithm stops if for three consecu-
tive temperatures no new solution has been accepted.

SCHEDULING AND BUS ACCESS OPTIMIZATION

89

4.5 Experimental Results
For the evaluation of our scheduling algorithms we first used
conditional process graphs generated for experimental purpose.
We considered architectures consisting of 2, 4, 6, 8 or 10 nodes.
Forty processes were assigned to each node, resulting in applica-
tions of 80, 160, 240, 320 or 400 processes. Thirty applications
were generated for each dimension, thus a total of 150 applica-
tions were used for the experimental evaluation. Execution
times and message lengths were assigned randomly using both
uniform and exponential distribution. For the communication
channel we considered a transmission speed of 256 Kbps and a
length below 20 meters. The maximum length of the data field
was 8 bytes, and the frequency of the TTP controller was chosen
to be 20 MHz. All experiments were run on a SPARCstation 20.

4.5.1 PRIORITIES FOR THE TTP SCHEDULING

The first result concerns the quality of the schedules produced
by the list scheduling based algorithm using the PCP and the
MPCP priority functions. In order to compare the two priority
functions, we have calculated the average percentage deviations
of the schedule length produced with PCP and MPCP from the
length of the best schedule between the two. The results are
depicted in Figure 4.8a. In average the deviation with MPCP is
11.34 times smaller than with PCP. However, due to its dynamic
nature, MPCP has in average a bigger execution time than PCP.
The average execution times for the ListScheduling function using
PCP and MPCP are depicted in Figure 4.8b and are under half a
second for graphs with 400 processes.

4.5.2 BUS ACCESS OPTIMIZATION HEURISTICS

In the next experiments we were interested to check the poten-
tial of the algorithms presented in Section 4.4 to improve the
generated schedules by optimizing the bus access scheme. We

CHAPTER 4

90

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400 450

PCP
MPCP

Number of processes

A
ve

ra
ge

 e
xe

cu
ti

on
 t

im
e

[s
ec

on
ds

]

Figure 4.8: Comparison of the Two Priority Functions

0

1

2

3

4

5

6

7

8

9

10

80 160 240 320 400

PCP

MPCP

Number of processes

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

a) Quality of schedules with PCP and MPCP

a) Average execution time of PCP and MPCP

SCHEDULING AND BUS ACCESS OPTIMIZATION

91

compared schedule lengths, obtained for the 150 applications in
the previous section, considering four different bus access
schemes: the straightforward solution, the optimized schemes
generated with the two alternatives of our greedy algorithm
(OptimizeAccess1 and OptimizeAccess2) and the near-optimal
scheme produced using the simulated annealing (SA) based algo-
rithm. Very long and extensive runs have been performed with
the SA algorithm for each application and the best ever solution
produced has been considered as the near-optimum for that
case.

Table 4.2 presents the average and maximum percentage
deviation of the schedule lengths obtained with the straightfor-
ward solution and with the two optimized schemes from the
length obtained with the near-optimal scheme. For each of the
application dimensions, the average optimization time,
expressed in seconds, is also given.

The first conclusion is that by considering the optimization of
the bus access scheme, the results improve significantly com-
pared to the straightforward solution. The greedy heuristic per-
forms well for all the graph dimensions. As expected, the
alternative OptimizeAccess1 (which considers all allowed slot
lengths) produces slightly better results, on average, than

Table 4.2: Evaluation of the Bus Access Optimization
Algorithms

No. of
proc.

Straightforward
solution

OptimizeAccess1 OptimizeAccess2

avg.
dev.

max.
dev.

avg.
dev.

max.
dev.

exec.
time

avg.
dev.

max.
dev.

exec.
time

80 3.16% 21% 0.02% 0.5% 0.25s 1.8% 19.7% 0.04s
160 14.4% 53.4% 2.5% 9.5% 2.07s 4.9% 26.3% 0.28s
240 37.6% 110% 7.4% 24.8% 10.46s 9.3% 31.4% 1.34s
320 51.5% 135% 8.5% 31.9% 34.69s 12.1% 37.1% 4.8s
400 48% 135% 10.5% 32.9% 56.04s 11.8% 31.6% 8.2s

CHAPTER 4

92

OptimizeAccess2. However, the execution times are much smaller
for OptimizeAccess2. It is interesting to mention that the average
execution times for the SA algorithm, needed to find the near-
optimal solutions, are between 5 minutes for the applications
with 80 processes and 275 minutes for 400 processes.

4.5.3 THE VEHICLE CRUISE CONTROLLER

Finally, we have evaluated our approaches using the cruise con-
troller case study presented in Section 2.3.3. For the implemen-
tation of the cruise controller as a time-driven system we have
considered:

 • the hardware architecture from Figure 2.7a on page 40, con-
sisting of five nodes interconnected by a TTP bus,

 • the software architecture for time-triggered systems, out-
lined in Section 3.3,

 • the mapped model presented in Figure 2.9 on page 42, hav-
ing 32 processes and two conditions,

 • and a deadline of 400 ms.
Thus, for the cruise controller example, the straightforward

solution for bus access resulted in a schedule corresponding to a
maximal delay of 429 ms (which does not meet the deadline)
when PCP was used as a priority function, while using MPCP we
obtained a schedule length of 398 ms. The first and second
greedy heuristics for bus access optimization produced solutions
that reduced the worst-case delay to 314 and 323 ms, respec-
tively. The near-optimal solution (produced with the SA based
approach) results in a delay of 302 ms. The greedy heuristics
and the SA have used MPCP as the priority function for list sched-
uling.

This shows that the quality of generated schedules can be
improved by considering the exact details of the communication
protocol, and by optimizing the bus access scheme.

SCHEDULING AND BUS ACCESS OPTIMIZATION

93

Using as a basis the timing analysis and communication syn-
thesis developed in this chapter, in the next chapter we will
address the mapping design task within an incremental design
environment.

95

Chapter 5
Incremental Mapping for

Time-Driven Systems

IN THIS CHAPTER we present an approach to mapping and
scheduling for time-driven systems where processes are scheduled
according to a non-preemptive static cyclic scheduling scheme,
and communication uses a time division multiple access (TDMA)
protocol. We accurately take into consideration the communica-
tion costs and consider, during the mapping and scheduling pro-
cess, the particular requirements of the communication protocol.

The mapping and scheduling tasks are considered in the con-
text of an incremental design process as outlined in Section 2.2.
This implies that we perform mapping and scheduling of new
functionality on a given distributed embedded system, so that
certain design constraints are satisfied and, in addition:

1. The already running applications are disturbed as little as
possible.

2. There is a good chance that, later, new functionality can eas-
ily be mapped on the resulted system.

We propose a new heuristic, together with the corresponding
design criteria, which finds the set of old applications that have

CHAPTER 5

96

to be re-mapped and rescheduled at the same time with map-
ping and scheduling the new application, such that the distur-
bance on the running system (expressed as the total cost implied
by the modifications) is minimized. Once this set of applications
has been determined, mapping and scheduling are performed
according to the requirements stated above.

Supporting such a design process is of critical importance for
current and future industrial practice, as the time interval
between successive generations of a product is continuously
decreasing, while the complexity due to increased sophistication
of new functionality is growing rapidly. The goal of reducing the
overall cost of successive product generations has been one of
the main motors behind the, currently very popular, concept of
platform-based design (see Section 2.1.4).

Addressing mapping and scheduling inside an incremental
design process is not limited to time-driven systems. In Chapter
7 we investigate the issues arising from considering incremental
mapping and scheduling in the context of event-driven systems,
where processes are scheduled according to a fixed-priority pre-
emptive scheme, while messages are sent using the TTP.

For the sake of simplifying the discussion, we will not address
here, nor in Chapter 7, the memory constraints during process
mapping and the implications of memory space in the incremen-
tal design process.

This chapter is organized as follows. The next section presents
some issues related to mapping and scheduling in the context of
a system based on a TDMA communication protocol. In
Section 5.2 the problem we are going to solve is formulated.
Section 5.3 introduces our approach to quantitatively character-
ize certain features of future applications. In Section 5.3 we
introduce the metrics we have defined in order to capture the
quality of a given design alternative and, based on these met-
rics, we give an exact problem formulation. Our mapping and
scheduling strategy is described in Section 5.4 and the experi-
mental results are presented in Section 5.5.

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

97

5.1 Background
In order to implement an application represented as a set of con-
ditional process graphs as describe in Section 2.3, the designer
has to map the processes to the system nodes and to derive a
static cyclic schedule such that all deadlines are satisfied. We
first illustrate some of the problems related to mapping and
scheduling in the context of a system based on a TDMA communi-
cation protocol, before going on to explore further aspects spe-
cific to an incremental design approach.

Example 5.1: Let us consider the example in Figure 5.1
where we want to map an application consisting of four pro-
cesses P1 to P4, with a period and deadline of 50 ms. The
architecture is composed of three nodes that communicate
according to a TDMA protocol, such that Ni transmits in slot
Si. For this example we suppose that there is no other previ-
ous application running on the system.

According to the specification, processes P1 and P3 are con-
strained to node N1, while P2 and P4 can be mapped on nodes
N2 or N3, but not N1. The worst case execution times of pro-
cesses on each potential node and the sequence and size of
TDMA slots, are presented in Figure 5.1. In order to keep the
example simple, we suppose that the message sizes are such
that each message fits into one TDMA slot.

We consider two alternative mappings. If we map P2 and
P4 on the faster processor N3, the resulting schedule length
(Figure 5.1a) will be 52 ms, which does not meet the dead-
line. However, if we map P2 and P4 on the slower processor
N2, the schedule length (Figure 5.1b) is 48 ms, which meets
the deadline. Note, that the total traffic on the bus is the
same for both mappings and the initial processor load is 0 on
both N2 and N3.

This result has its explanation in the impact of the commu-
nication protocol. P3 cannot start before receiving messages

CHAPTER 5

98

F
ig

u
re

 5
.1

:
M

ap
pi

n
g

an
d

S
ch

ed
u

li
n

g
E

xa
m

pl
es

 f
or

 T
im

e-
D

ri
ve

n
 S

ys
te

m
s

a)
 P

ro
ce

ss
es

 P
2

an
d

P
4

ar
e

m
ap

pe
d

on
 t

h
e

fa
st

 n
od

e

b
)

P
ro

ce
ss

es
 P

2
an

d
P

4
ar

e
m

ap
pe

d
on

 t
h

e
sl

ow
 n

od
e

N
2

(s
lo

w
)

P
1

P
2

P
3

P
4

N
1

N
2

N
3

4m
s

12
m

s

8m
s

—

12
m

s
4m

s

8m
s

— —
—

T
D

M
A

 r
ou

n
d:

— —

N
1

N
3

(f
as

t)

S
lo

t
le

n
gt

h
s:

m
1,

2
m

1,
4

N
1

N
3

B
u

s

P
2

P
3

P
4 m

2,
3

m
4,

3

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
1

S
2

S
3

P
1

m
1,

2
m

1,
4

P
2

P
3

P
4

m
2,

3
m

4,
3

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
1

S
2

S
3

P
1

T
 =

 D
 =

 5
0m

s

N
1

N
2

B
u

s

P
1

P
2

P
4

P
3

S
1

S
2

S
3

S
1=

S
2=

S
3=

4m
s

P
ro

ce
ss

 e
xe

cu
ti

on
 t

im
es

0m
s

4m
s

52
m

s

0m
s

4m
s

48
m

s

c)
 A

pp
li

ca
ti

on

d
)

A
rc

h
it

ec
tu

re

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

99

m2,3 and m4,3. However, slot S2 corresponding to node N2 pre-
cedes in the TDMA round slot S3 on which node N3 communi-
cates. Thus, the messages which P3 needs are available
sooner in the case P2 and P4 are, counter-intuitively, mapped
on the slower node.

But finding a valid schedule is not enough if we are to support
an incremental design process as discussed in the introduction.
In this case, starting from a valid design, we have to improve the
mapping and scheduling so that not only the design constraints
are satisfied, but also there is a good chance that, later, new
functionality can easily be mapped on the resulted system.

Example 5.2: To illustrate the role of mapping and schedul-
ing in the context of an incremental design process, let us
consider the example in Figure 5.2. For simplicity, we con-
sider an architecture consisting of a single processor. The
system is currently running application ψ (Figure 5.2a).

At a particular moment application Γ1 has to be imple-
mented on top of ψ. Three possible implementation alterna-
tives for Γ1 are depicted in Figure 5.2b1, 5.2c1, and 5.2d1. All
three are meeting the imposed time constraint for Γ1.

At a later moment, application Γ2 has to be implemented
on the system running ψ plus Γ1. If Γ1 has been implemented
as shown in Figure 5.2b1, there is no possibility to map appli-
cation Γ2 on the given system (in particular, there is no time
slack available for process P7). If Γ1 has been implemented as
in Figure 5.2c1 or 5.2d1, Γ2 can be correctly mapped and
scheduled on top of ψ and Γ1.

There are two aspects which should be highlighted based on
this example:

1. If application Γ1 is implemented like in Figure 5.2c1 or 5.2d1,
it is possible to implement Γ2 on top of the existing system,
without performing any modifications on the implementa-

CHAPTER 5

100

80

80

80

80

Figure 5.2: Incremental Mapping and Scheduling
Examples for Time-Driven Systems

P1 P2

P1 P2

P1 P2

P1 P2

P1 P2

P1 P2

P6

P7

P3 P4 P5

P3 P4 P5

P3 P4 P5

P3 P4 P5

P3 P4 P5

P3 P4 P5

P6

P6 P7

P1

P2

P3

P4

P5

P6

P7

Application ψ
tP1

 = tP2
 = 10ms

Tψ = Dψ = 90ms

Application Γ1
tP3

 = tP4
 = tP5

 = 10ms
TΓ1

 = 90 ms; DΓ1
 = 80ms

Application Γ2
tP6

 = 10ms; tP7
 = 30ms

TΓ2
 = DΓ2

 = 90ms

b1) Application Γ1 on top of ψ: 1st alternative

b2) Application Γ2 on top of the 1st alternative:

P7 cannot be mapped.

c1) Application Γ1 on top of ψ: 2nd alternative

c2) Application Γ2 on top of the 2nd alternative:

successful implementation.

d1) Application Γ1 on top of ψ: 3rd alternative

d2) Application Γ2 on top of the 3rd alternative:

successful implementation.

90ms

P1 P2

a) Initial system, running application ψ

90ms

90ms

90ms

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

101

tion of previous applications. This could be the case if, during
implementation of Γ1, the designers have taken into consid-
eration the fact that, in future, an application having the
characteristics of Γ2 will possibly be added to the system.

2. If Γ1 has been implemented like in Figure 5.2b1, Γ2 can be
added to the system only after performing certain modifica-
tions on the implementation of Γ1 and/or ψ. In this case, of
course, it is important to perform as few as possible modifica-
tions on previous applications, in order to reduce the devel-
opment costs.

5.2 Incremental Mapping and Scheduling
Our goal is to map and schedule an application Γcurrent on a sys-
tem that already implements a set ψ of applications, considering
the following requirements:

Requirement a All constraints on Γcurrent are satisfied and
minimal modifications are performed to
the applications in ψ.

Requirement b New applications Γfuture can be mapped on
top of the resulting system.

In order to achieve our goal we need certain information to be
available concerning the set of applications ψ as well as the pos-
sible future applications Γfuture. What exactly we have to know
about existing applications has been outlined in Section 2.3.2,
while the characterization of future applications will be dis-
cussed in the next section. In Section 5.3 we then introduce the
quality metrics which will allow us to give a more rigorous for-
mulation of the problem we are going to solve.

The processes in application Γcurrent can interact with the previ-
ously mapped applications ψ by reading messages generated on
the bus by processes in ψ. In this case, the reading process has to
be synchronized with the arrival of the message on the bus,

CHAPTER 5

102

which is easy to model as an additional time constraint on the
particular receiving process. This constraint is then considered
(as any other deadline) during scheduling of Γcurrent.

5.2.1 CHARACTERIZING FUTURE APPLICATIONS

What do we suppose to know about the family Γfuture of applica-
tions which do not exist yet? Given a certain limited application
area (e.g., automotive electronics), it is not unreasonable to
assume that, based on the designers’ previous experience, the
nature of expected future functions to be implemented, profiling
of previous applications, available incomplete designs for future
versions of the product, etc., it is possible to characterize the
family of applications which possibly could be added to the cur-
rent implementation. This is an assumption which is basic for
the concept of incremental design.

Hence, we consider that, with respect to the future applica-
tions, we know the set St = {tmin, ..., ti, ..., tmax} of possible worst-
case execution times for processes, and the set Sb = {bmin, ...,
bi, ..., bmax} of possible message sizes. We also assume that over
these sets we know the distributions of probability fSt(t) for t ∈ St

and fSb(b) for b ∈ Sb.

Example 5.3: For example, we might have predicted possi-
ble worst-case execution times of different processes in
future applications St={50, 100, 200, 300, 500 ms}. If there is
a higher probability of having processes of 100 ms, and a
very low probability of having processes of 300 ms and 500
ms, then our distribution function fSt(t) could look like this:
fSt(50) = 0.20, fSt(100) = 0.50, fSt(200) = 0.20, fSt(300) = 0.05,
and fSt(500) = 0.05.

Another information concerning the future applications is
related to the period of the constituent process graphs. In partic-
ular, the smallest expected period Tmin is assumed to be given,
together with the expected necessary processor time tneed, and

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

103

bus bandwidth bneed, inside such a period Tmin. As will be shown
later, this information is treated in a flexible way during the
design process and is used in order to provide a fair distribution
of available resources.

The execution times in St, as well as tneed, are considered rela-
tive to the slowest node in the system. All the other nodes are
characterized by a speedup factor relative to this slowest node. A
normalization with these factors is performed when computing
the metrics C1

P and C2
P introduced in the following section.

5.3 Quality Metrics and Objective Function
A designer will be able to map and schedule an application Γfuture

on top of a system implementing ψ and Γcurrent only if there are
sufficient resources available. For the discussion in this chapter,
the resources which we consider are processor time and the
bandwidth on the bus. In the context of a non-preemptive static
scheduling policy, having free resources translates into having
free time slots on the processors and having space left for
messages in the bus slots. We call these free slots of available
time on the processor or on the bus, slack.

It is to be noted that the total quantity of computation and
communication power available on our system after we have
mapped and scheduled Γcurrent on top of ψ is the same regardless
of the mapping and scheduling policies used. What depends on
the mapping and scheduling strategy is the distribution of
slacks along the time line and the size of the individual slacks. It
is exactly this size and distribution of the slacks that character-
izes the quality of a certain design alternative from the point of
view of flexibility for future upgrades.

In this section we introduce two criteria in order to reflect the
degree to which a design alternative meets the requirement b
presented in Section 5.2. For each criterion we provide metrics
which quantify the degree to which the criterion is met. The first

CHAPTER 5

104

criterion reflects how well the resulted slack sizes fit to a future
application, and the second criterion expresses how well the
slack is distributed in time.

5.3.1 SLACK SIZES (THE FIRST CRITERION)

The slack sizes resulted after the implementation of Γcurrent on
top of ψ should be such that they best accommodate a given fam-
ily of applications Γfuture, characterized by the sets St, Sb and the
probability distributions fSt and fSb, as outlined in Section 5.2.1.

Example 5.4: Let us go back to the example in Figure 5.2
where Γ1 is what we now call Γcurrent, while Γ2, to be later
implemented on top of ψ and Γ1, is Γfuture. This Γfuture consists
of the two processes P6 and P7. It can be observed that the
best configuration from the point of view of accommodating
Γfuture, taking into consideration only slack sizes, is to have a
contiguous slack after implementation of Γcurrent
(Figure 5.2d1). However, in reality, it is almost impossible to
map and schedule the current application such that a contig-
uous slack is obtained. Not only is it impossible, but it is also
undesirable from the point of view of the second design crite-
rion, to be discussed next. However, as we can see from
Figure 5.2b1, if we schedule Γcurrent such that it fragments too
much the slack, it is impossible to fit Γfuture because there is
no slack that can accommodate process P7. A situation as the
one depicted in Figure 5.2c1 is desirable, where the resulted
slack sizes are adapted to the characteristics of the Γfuture
application.

In order to measure the degree to which the slack sizes in a
given design alternative fit the future applications, we provide
two metrics, C1

P and C1
m. C1

P captures how much of the largest
future application, which theoretically could be mapped on the
system, can be mapped on top of the current design alternative.
C1

m is similar, relative to the slacks in the bus slots.

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

105

How does the largest future application which theoretically
could be mapped on the system look like? The total processor
time and bus bandwidth available for this largest future appli-
cation is the total slack available on the processors and bus,
respectively, after implementing Γcurrent. Process and message
sizes of this hypothetical largest application are estimated
knowing the total size of the available slack, and the character-
istics of the future applications as expressed by the sets St and
Sb, and the probability distributions fSt and fSb.

Example 5.5: Let us consider, for example, that the total
slack size on the processors is of 2800 ms and the set of possi-
ble worst case execution times is St = {50, 100, 200, 300, 500
ms}. The probability distribution function fSt is defined as fol-
lows: fSt(50) = 0.20, fSt(100) = 0.50, fSt(200) = 0.20, fSt(300) =
0.05, and fSt(500) = 0.05. Under these circumstances, the
largest hypothetical future application will consist of 20 pro-
cesses: 10 processes (half of the total, fSt(100) = 0.50) with a
worst case execution time of 100 ms, four processes with 50
ms, four with 200 ms, one with 300 and one with 500 ms.

After we have determined the number of processes of this
largest hypothetical Γfuture and their worst-case execution times,
we apply a bin-packing algorithm [Mar90] using the best-fit pol-
icy in which we consider processes as the objects to be packed,
and the available slacks as containers. The total execution time
of processes which are left unpacked, relative to the total execu-
tion time of the whole process set, gives the metric C1

P. The same
is the case with the metric C1

m, but applied to message sizes and
available slacks in the bus slots.

Example 5.6: Let us consider the example in Figure 5.2
and suppose a hypothetical Γfuture consisting of two processes
like those of application Γ2. For the design alternatives in
Figure 5.2c1 and 5.2d1, C1

P = 0% (both alternatives are per-
fect from the point of view of slack sizes). For the alternative

CHAPTER 5

106

in Figure 5.2b1, however, C1
P= 30 / 40 = 75% — the worst case

execution time of P7 (which is left unpacked) relative the
total execution time of the two processes.

5.3.2 DISTRIBUTION OF SLACKS (THE SECOND CRITERION)

In the previous section we have defined a metric which captures
how well the sizes of the slacks fit a possible future application.
A similar metric is needed to characterize the distribution of
slacks over time.

Let Pi be a process with period Ti that belongs to a future
application, and M(Pi) the node on which Pi will be mapped. The
worst case execution time of Pi on node M(Pi) is Ci. In order to
schedule Pi we need a slack of size Ci that is available periodi-
cally, within a period Ti, on processor M(Pi). If we consider a
group of processes with period T, which are part of Γfuture, in
order to implement them, a certain amount of slack is needed
which is available periodically, with a period T, on the nodes
implementing the respective processes.

During the implementation of Γcurrent we aim for a slack distri-
bution such that the future application with the smallest
expected period Tmin and with the necessary processor time tneed,
and bus bandwidth bneed, can be accommodated (see
Section 5.2.1).

Thus, for each node, we compute the minimum periodic slack,
inside a Tmin period. By summing these minima, we obtain the
slack which is available periodically to Γfuture. This is the C2

P met-
ric. The C2

m metric characterizes the minimum periodically
available bandwidth on the bus and it is computed in a similar
way.

Example 5.7: In Figure 5.3 we consider an example with
Tmin = 120 ms, tneed = 90 ms, and bneed = 65 ms. The length of
the schedule table of the system implementing ψ and Γcurrent
is 360 ms (in Section 5.4 we will elaborate on the length of

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

107

F
ig

u
re

 5
.3

:
E

xa
m

pl
es

 f
or

 t
h

e
S

ec
on

d
D

es
ig

n
 C

ri
te

ri
on

m
in

(4
0,

 8
0,

0)

 =

0m
s

m
in

(4
0,

0,

 8
0)

 =

0m
s

m
in

(8
0,

 8
0,

 4
0)

 =
 4

0m
s

C
P 2

=
40

 +
 0

 +
 0

 =
 4

0m
s

m
in

(4
0,

 4
0,

 4
0)

 =
 4

0m
s

m
in

(4
0,

 4
0,

 4
0)

 =
 4

0m
s

m
in

(8
0,

 8
0,

 4
0)

 =
 4

0m
s

C
P 2

=
40

 +
 4

0
+

40
 =

 1
20

m
s

a) b
)

36
0

m
s

T
m

in

N
1

N
2

N
3

B
u

s

P
1

S
3

S
2

S
1

S
3

S
2

S
1

S
3

S
2

S
1

S
3

S
2

S
1 R

ou
n

d
1

R
ou

n
d

4

P
er

io
d

1
P

er
io

d
2

P
er

io
d

3

N
1

N
2

N
3

B
u

s
S

3
S

2
S

1
S

3
S

2
S

1
S

3
S

2
S

1
S

3
S

2
S

1 R
ou

n
d

1
R

ou
n

d
2

R
ou

n
d

3
R

ou
n

d
4

R
ou

n
d

2
R

ou
n

d
3

C
m 2

=
m

in
(6

0,
 1

20
, 9

0)
 =

 6
0m

s

C
m 2

=
m

in
(9

0,
 9

0,
 9

0)
 =

 9
0m

s

T
im

e
sl

ot
s

oc
cu

pi
ed

 b
y

ψ
 a

n
d

Γ c
u

rr
en

t
S

la
ck

T
m

in
 =

 1
20

t n
ee

d
 =

 9
0

b n
ee

d
 =

 6
5

CHAPTER 5

108

the global schedule table). Consequently, we have to investi-
gate three periods of length Tmin each. The system consists of
three nodes.

Let us consider the situation in Figure 5.3a. In the first
period, Period 1, there are 40 ms of slack available on node
N1, in the second period 80 ms, and in the third period no
slack is available on N1. Hence, the total slack a future appli-
cation of period Tmin can use on node N1 is min(40, 80, 0) = 0
ms. Neither can node N2 provide slack for this application, as
in Period 1 there is no slack available. However, on node N3
there are at least 40 ms of slack available in each period.
Thus, with the configuration in Figure 5.3a we have C2

P = 40
ms, which is not sufficient to accommodate tneed = 90 ms. The
available periodic slack on the bus is also insufficient:
C2

m = 60 ms < bneed.
However, in the situation presented in Figure 5.3b, we

have C2
P = 120 ms > tneed, and C2

m = 90 ms > bneed, which
means that enough resources are available, periodically, for
the application.

5.3.3 OBJECTIVE FUNCTION AND EXACT PROBLEM FORMULATION

In order to capture how well a certain design alternative meets
the requirement b stated in Section 5.2, the metrics discussed
before are combined in an objective function, as follows:

(5.1)

where the metric values introduced in the previous section are
weighted by the constants w1

P, w2
P, w1

m, and w2
m. Our mapping

and scheduling strategy will try to minimize this function.
The first two terms measure how well the resulted slack sizes

fit to a future application (the first criterion), while the second

C w1
P

C1
P()

2
w1

m
C1

m()
2

w2
P

max 0 tneed, C2
P

–() w2
m

max 0 bneed, C2
m

–()

+ +

+

=

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

109

two terms reflect the distribution of slacks (the second criterion).
In order to obtain a balanced solution, that favors a good fitting
both on the processors and on the bus, we have used the squares
of the metrics.

We call a valid solution one with a mapping and scheduling
which satisfies all the design constraints (in our case the dead-
lines) and meets the second criterion (C2

P ≥ tneed and C2
m ≥ bneed)1.

At this point we can give an exact formulation of our problem:
Given an existing set of applications ψ which are already
mapped and scheduled, and an application Γcurrent to be imple-
mented on top of ψ, we are interested to find that subset Ω ⊆ ψ of
old applications to be remapped and rescheduled such that we
produce a valid solution for Γcurrent ∪ Ω and the total cost of mod-
ification R(Ω) is minimized (see Section 2.3.2 for the details con-
cerning the modification cost of an application). Once such a set
Ω of applications is found, we are interested to optimize the
implementation of Γcurrent ∪ Ω such that the objective function C
(Equation 5.1) is minimized, considering a family of future
applications characterized by the sets St and Sb, the functions fSt
and fSb as well as the parameters Tmin, tneed, and bneed.

A mapping and scheduling strategy based on this problem for-
mulation is presented in the following section.

5.4 Mapping and Scheduling Strategy
As shown in the algorithm in Figure 5.4, our mapping and
scheduling strategy (MS) consists of two steps. In the first step
(lines 1–14) we try to obtain a valid solution for the mapping and
scheduling of Γcurrent ∪ Ω so that the modification cost R(Ω) is

1. This definition of a valid solution can be relaxed by imposing only the
satisfaction of deadlines. In this case, the mapping and scheduling
algorithm in Figure 5.4 will look after a solution which satisfies the
deadlines and minimizes R(Ω); the additional second criterion is, in
this case, only considered optionally.

CHAPTER 5

110

minimized. Starting from such a solution, the second step (lines
17–20) iteratively improves the design in order to minimize the
objective function C. In the context in which the second criterion
is satisfied after the first step, improving the cost function dur-
ing the second step aims at minimizing the value of

.

If the first step has not succeeded in finding a solution such
that the imposed timing constraints are satisfied, this means
that there are not sufficient resources available to implement
the application Γcurrent. Thus, modifications of the system archi-
tecture have to be performed before restarting the mapping and
scheduling procedure. If, however, the timing constraints are
met but the second design criterion is not satisfied, a larger Tmin

w1
P C1

P()
2

w1
m C1

m()
2

+

Figure 5.4: The Mapping and Scheduling Strategy

MappingSchedulingStrategy
1 Step 1: try to find a valid solution that minimizes R(Ω)
2 Find a mapping and scheduling of Γcurrent ∪ Ω on top of ψ \ Ω so that:
3 1. constraints are satisfied;
4 2. modification cost R(Ω) is minimized;
5 3. the second criterion is satisfied: C2

P ≥ tneed and C2
m ≥ bneed

6

7 if Step1 has not succeeded then
8 if constraints are not satisfied then
9 change architecture
10 else
11 suggest new Tmin, tneed or bneed
12 end if
13 go to Step 1
14 end if
15

16

17 Step 2: improve the solution by minimizing objective function C
18 Perform iteratively transformations which
19 improve the first criterion (the metrics C1

P and C1
m)

20 without invalidating the second criterion.
21

end MappingSchedulingStrategy

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

111

(smallest expected period of a future application, see
Section 5.2.1) or smaller values for tneed and/or bneed are sug-
gested to the designer (line 11). This, of course, reduces the fre-
quency of possible future applications and the amount of
processor and bus resources available to them.

In the following section we briefly discuss the basic mapping
and scheduling algorithm we have used in order to generate an
initial solution. The heuristic used to iteratively improve the
design with regard to the first and the second design criteria is
presented in Section 5.4.2. In Section 5.4.3 we describe three
alternative heuristics which can be used during the first step in
order to find the optimal subset of applications to be modified.

5.4.1 THE INITIAL MAPPING AND SCHEDULING

The first step of our mapping and scheduling strategy MS con-
sists of an iteration that tries different subsets Ω ⊆ ψ with the
intention to find that subset Ω = Ωmin of old applications to be re-
mapped and rescheduled which produces a valid solution for
Γcurrent ∪ Ω such that R(Ω) is minimized. Given a subset Ω, the
InitialMappingScheduling function (IMS) constructs a mapping and a
schedule for the applications Γcurrent ∪ Ω on top of ψ \ Ω, which
meets the deadlines, without worrying about the two criteria
introduced in Section 5.3.

The IMS is a classical mapping and scheduling algorithm for
which we have used as a starting point the Heterogeneous Crit-
ical Path (HCP) algorithm, introduced in [Jor97]. The HCP is
based on a list scheduling approach [Cof72]. We have modified
the HCP algorithm in four main regards:

1. The list scheduling approach that is used as a basis for HCP

is considering applications modeled as conditional process
graphs, as described in Section 4.2.1.

2. We consider that mapping and scheduling does not start
with an empty system but a system on which a certain num-
ber of processes are already mapped.

CHAPTER 5

112

3. Messages are scheduled into bus-slots according to the TDMA

protocol. The TDMA-based message scheduling technique has
been presented in Section 4.3.

4. As a priority function for list scheduling we use, instead of
the CP (critical path) priority function employed in [Jor97],
the MPCP (modified partial critical path) function introduced
in Section 4.3.2. The MPCP takes into consideration the par-
ticularities of the communication protocol for calculation of
communication delays. These delays are not estimated based
only on the message length, but also on the time when slots,
assigned to the particular node which generates the mes-
sage, will be available.

For the example in Figure 5.1, our initial mapping and sched-
uling algorithm will be able to produce the optimal solution with
a schedule length of 48 ms.

However, before performing the effective mapping and sched-
uling with IMS, two aspects have to be addressed. First, the pro-
cess graphs Gi ∈ Γcurrent ∪ Ω have to be merged into a single
graph Gcurrent, by unrolling of process graphs and inserting
dummy nodes as shown in Figure 5.5. The period TGcurrent of
Gcurrent is equal to the least common multiplier of the periods TGi
of the graphs Gi. Dummy nodes (depicted as empty disks in
Figure 5.5) represent processes with a certain execution time
but are not mapped to any processor or bus.

In addition, we have to consider during scheduling the mis-
match between the periods of the already existing system and
those of the current application. The schedule table into which
we would like to schedule Gcurrent has a length of Tψ\Ω which is
the global period of the system ψ after extraction of the applica-
tions in Ω. However, the period Tcurrent of Gcurrent can be different
from Tψ\Ω. Hence, before scheduling Gcurrent into the existing
schedule table, the schedule table is expanded to the least com-
mon multiplier of the two periods. A similar procedure is fol-
lowed in the case Tcurrent > Tψ\Ω.

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

113

Figure 5.5: Process Graph Merging Example

period: TG1

TG2 = DG2

Process graph:

(= 3TG1
)

DG1

Process graph:
G1 ∈ Γcurrent ∪ Ω

TG1

deadline: DG1

G2 ∈ Γcurrent ∪ Ω

n1

n2

n3

n4

source

sink

period = deadline = 3TG1

Merged process graph Gcurrent:

T
G

cu
rren

t =
 3T

G
1

n5

Execution times

of dummy processes:

tn1
 = TG1

tn2
 = 2TG1

tn3
 = 3TG1

 – DG1

tn4
 = 2TG1

 – DG1

tn5
 = TG1

 – DG1

tsource = tsink = 0

CHAPTER 5

114

5.4.2 ITERATIVE DESIGN TRANSFORMATIONS

Once IMS has produced a mapping and scheduling which satis-
fies the timing constraints, the next goal of Step 1 is to improve
the design in order to satisfy the second design criterion
(C2

P ≥ tneed and C2
m ≥ bneed). During the second step, the design is

then further transformed with the goal of minimizing the value
of , according to the requirements of the first
criterion, without invalidating the second criterion achieved in
the first step. In both steps we iteratively improve the design
using a transformational approach. These successive transfor-
mations are performed inside the (innermost) repeat loops of the
first (lines 11–19 in Figure 5.6) and second step (lines 31–38). A
new design is obtained from the current one by performing a
transformation called move. We consider the following two cate-
gories of moves:

1. moving a process to a different slack found on the same node
or on a different node;

2. moving a message to a different slack on the bus.
In order to eliminate those moves that will lead to an infeasi-

ble design (that violates deadlines), we do as follows. For each
process Pi, we calculate the ASAP(Pi) and ALAP(Pi) times consid-
ering the resources of the given hardware architecture. ASAP(Pi)
is the earliest time Pi can start its execution, while ALAP(Pi) is
the latest time Pi can start its execution without causing the
application to miss its deadline. When moving Pi we will con-
sider slacks on the target processor only inside the [ASAP(Pi),
ALAP(Pi)] interval. The same reasoning holds for messages, with
the addition that a message can only be moved to slacks belong-
ing to a slot that corresponds to the sender node. Any violation of
the data dependency constraints caused by a move is rectified by
shifting processes or messages concerned in an appropriate way.
If such a shift produces a deadline violation, the move is
rejected.

w1
P C1

P()
2

w1
m C1

m()
2

+

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

115

Figure 5.6: Step One and Two of the Mapping and
Scheduling Strategy in Figure 5.4

1 Step 1: try to find a valid solution that minimizes R(Ω)
2 Ω=∅
3 repeat
4 succeeded=InitialMappingScheduling(ψ \ Ω, Γcurrent ∪ Ω)
5 -- compute ASAP–ALAP intervals for all processes
6 ASAP(Γcurrent ∪ Ω); ALAP(Γcurrent ∪ Ω)
7 -- if time constraints are satisfied
8 if succeeded then
9 -- design transformations in order to satisfy
10 -- the second design criterion
11 repeat
12 -- find set of moves with the highest potential
13 -- to maximize C2

P or C2
m

14 move_set = PotentialMoveC2
P(Γcurrent ∪ Ω) ∪

15 PotentialMoveC2
m(Γcurrent ∪ Ω)

16 -- select and perform move which improves most C2
17 move = SelectMoveC2(move_set); Perform(move)
18 succeeded = C2

P ≥ tneed and C2
m ≥ bneed

19 until succeeded or maximum number of iterations reached
20 end if
21 if succeeded and R(Ω) smallest so far then
22 Ωvalid = Ω; solutionvalid = solutioncurrent
23 end if
24 -- try another subset
25 Ω = NextSubset(Ω)
26 until termination condition
27

28 Step 2: improve the solution by minimizing objective function C
29 solutioncurrent = solutionvalid; Ωmin = Ωvalid
30 -- design transformations in order to satisfy the first design criterion
31 repeat
32 -- find set of moves with highest potential to minimize C1

P or C1
m

33 move_set = PotentialMoveC1
P(Γcurrent ∪ Ωmin) ∪

34 PotentialMoveC1
m(Γcurrent ∪ Ωmin)

35 -- select move which improves and
36 -- does not invalidate the second criterion
37 move = SelectMoveC1(move_set); Perform(move)

38 until has not changed or
39 maximum number of iterations reached

w1
P C1

P()
2

w1
m C1

m()
2

+

w1
P C1

P()
2

w1
m C1

m()
2

+

CHAPTER 5

116

At each step, our heuristic tries to find those moves that have
the highest potential to improve the design. For each iteration a
set of potential moves is selected by the PotentialMoveX functions.
SelectMoveX then evaluates these moves with regard to the
respective metrics and selects the best one to be performed. We
now briefly discuss the four PotentialMoveX functions with the
corresponding moves.

PotentialMoveC2
P and PotentialMoveC2

m

Example 5.8: Consider Figure 5.3a on page 107. In Period 3
on node N1 there is no available slack. However, if we move
process P1 with 40 ms to the left into Period 2, as depicted in
Figure 5.3b, we create a slack in Period 3 and the periodic slack
on node N1 will be min(40, 40, 40) = 40 ms, instead of 0 ms.

Potential moves aimed at improving the metric C2
P will be the

shifting of processes inside their [ASAP, ALAP] interval in order to
improve the periodic slack. The move can be performed on the
same node or to the less loaded nodes. The same is true for mov-
ing messages in order to improve the metric C2

m. For the
improvement of the periodic bandwidth on the bus, we also con-
sider movement of processes, trying to place the sender and
receiver of a message on the same processor and, thus, reducing
the bus load.

PotentialMoveC1
P and PotentialMoveC1

m

The moves suggested by these two functions aim at improving
the C1 metric through reducing the slack fragmentation. The
heuristic is to evaluate only those moves that iteratively elimi-
nate the smallest slack in the schedule.

Example 5.9: Let us consider the example in Figure 5.7,
where we have three applications mapped on a single proces-
sor: ψ, consisting of P1 and P2, Γcurrent, having processes P3, P4
and P5, and Γfuture, with P6, P7 and P8. Figure 5.7 presents

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

117

three possible schedules; processes are depicted with rectan-
gles, the width of a rectangle representing the worst case
execution time of that process. The PotentialMoveC1 functions
start by identifying the smallest slack in the schedule table.

In Figure 5.7a, the smallest slack is the slack between P1
and P3. Once the smallest slack has been identified, potential
moves are investigated which either remove or enlarge the
slack. For example, the slack between P1 and P3 can be
removed by attaching P3 to P1, and it can be enlarged by
moving P3 to the right in the schedule table. Moves that
remove the slack are considered only if they do not lead to an
invalidation of the second design criterion, measured by the
C2 metric improved in the previous step (see Figure 5.6, Step
1). Also, the slack can be enlarged only if it does not create,
as a result, other unusable slack. A slack is unusable if it

Figure 5.7: Successive Steps with Potential
Moves for Improving the First Design Metric

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160160 170 180

P1

P1

P1

P2

P2

P2

P3 P4 P5

P3

P3

P4

P4

P5

P6

P7 P8Γfuture

Smallest slack

Smallest slack

a)
Smallest slack: between P1 and P3
Potential moves: P3 starting at 20,
having C1

P = 50% (denoted with 20/50%),
30/50%, 40/50%, 50/50%.
Selected move: P3 to 20, with C1

P = 50%.

b)
Smallest slack: between P5 and P2
Potential moves: P5 to 90/0%, 100/0%, 110/
50%, 130/50%, 140/50%, 150/0%, 160/0%.

Selected move: P5 to 90 with C1
P = 100%.

a)

b)

c)

P8 cannot be mapped;

P8 cannot be mapped;

Successful implementation

move P3 to start from 20

move P5 to start from 90

P6

P7

P6 P7

P7 P6 P8
P5

Γcurrent P3 P4 P5

ψ P1 P2

CHAPTER 5

118

cannot hold the smallest object of the future application, in
our case P6.

In Figure 5.7a, the slack can be removed by moving P3
such that it starts from time 20, immediately after P1, and it
can be enlarged by moving P3 so that it starts from 30, 40, or
50 (considering an increment which here was set by us to 10,
the size of P6, the smallest object in Γfuture). For each move,
the improvement on the C1 metric is calculated, and that
move is selected by the SelectMoveC1 function to be per-
formed, which leads to the largest improvement on C1. For
all the previously considered moves of P3, we are not able to
map P8 which represents 50% of the Γfuture, therefore
C1 = 50%. Consequently, we can perform any of the men-
tioned moves, and our algorithm selects the first one investi-
gated, the move to start P2 from 20, thus removing the slack.
As a result of this move, the new schedule table is the one in
Figure 5.7b.

In the next call to the PotentialMoveC1 function, the slack
between P5 and P2 is identified as the smallest slack. Out of
the potential moves that eliminate this slack, listed in
Figure 5.7 for case b, several lead to C1 = 0%, the largest
improvement (no processes from Γfuture are left out, so
C1 = 0%). SelectMoveC1 selects moving P5 to start from 90,
and thus we are able to map process P8 of the future applica-
tion, leading to a successful implementation in Figure 5.7c.

The previous example has only illustrated movements of pro-
cesses. Similarly, in PotentialMoveC1

m, we also consider moves of
messages in order to improve C1

m. However, the movement of
messages is restricted by the TDMA bus access scheme, such that
a message can only be moved in the same slot of another round.

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

119

5.4.3 MINIMIZING THE TOTAL MODIFICATION COST

The first step of our mapping and scheduling strategy, described
in Figure 5.6, iterates on successive subsets Ω searching for a
valid solution, which also minimizes the total modification cost
R(Ω) calculated using the Equation 2.1 in Section 2.3.2. As a
first attempt, the algorithm searches for a valid implementation
of Γcurrent without disturbing the existing applications (Ω = ∅). If
no valid solution is found, successive subsets Ω produced by the
function NextSubset are considered, until a termination condition
is met. The performance of the algorithm, in terms of runtime
and quality of the solutions produced, is strongly influenced by
the strategy employed for the function NextSubset and the termi-
nation condition. They determine how the design space is
explored while testing different subsets Ω of applications.

In the following sections we present three alternative strate-
gies for the implementation of the NextSubset function. The first
two can be considered as situated at opposite extremes: The first
one is potentially very slow but produces the optimal result
while the second is very fast and possibly low quality. The third
alternative is a heuristic capable of producing good quality
results in relatively short time, as will be demonstrated by the
experimental results presented in Section 5.5.2.

Exhaustive Search (ES)

In order to find Ωmin, the simplest solution is to try successively
all the possible subsets Ω ⊆ ψ. These subsets are generated in
the ascending order of the total modification cost, starting from
∅. The termination condition is fulfilled when the first valid
solution is found or no new subsets are to be generated. Since
the subsets are generated in ascending order, according to their
cost, the subset Ω that first produces a valid solution is also the
subset with the minimum modification cost.

CHAPTER 5

120

The generation of subsets is performed according to the graph
A that characterizes the existing applications (see Section 2.3.2).
Finding the next subset Ω, starting from the current one, is
achieved by a branch and bound algorithm that, in the worst
case, grows exponentially in time with the number of applica-
tions.

Example 5.10: For the example in Figure 2.6 on page 37,
discussed in Section 2.3.2, the call to NextSubset(∅) will gen-
erate Ω = {Γ7} which has the smallest nonzero modification
cost R({Γ7}) = 20. The next generated subsets, in order,
together with their corresponding total modification costs
are: R({Γ3}) = 50, R({Γ3, Γ7}) = 70, R({Γ4, Γ7}) = 90 (the inclu-
sion of Γ4 triggers the inclusion of Γ7), R({Γ2, Γ3}) = 120, R({Γ2,
Γ3, Γ7}) = 140, R({Γ3, Γ4, Γ7}) = 140, R({Γ1}) = 150, and so on.
The total number of possible subsets according to the graph
A in Figure 2.6 is 16.

This approach, while finding the optimal subset Ω, requires a
large amount of computation time and can be used only with a
small number of applications.

Ad-Hoc Selection Heuristic (AS)

If the number of applications is larger, a possible solution could
be based on a simple greedy heuristic which, starting from
Ω = ∅, progressively enlarges the subset until a valid solution is
produced. The algorithm looks at all the non-frozen applications
and picks that one which, together with its dependencies, has
the smallest modification cost. If the new subset does not pro-
duce a valid solution, it is enlarged by including, in the same
fashion, the next application with its dependencies. This greedy
expansion of the subset is continued until the set is large enough
to lead to a valid solution or no application is left.

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

121

Example 5.11: For the example in Figure 2.6 the call to
NextSubset(∅) will produce R({Γ7}) = 20, and will be
successively enlarged to R({Γ7, Γ3}) = 70, R({Γ7, Γ3, Γ2}) = 140
(Γ4 could have been picked as well in this step because it has
the same modification cost of 70 as Γ2 and its dependency Γ7
is already in the subset), R({Γ7, Γ3, Γ2, Γ4}) = 210, and so on.

While this approach finds very quickly a valid solution, if one
exists, it is possible that the resulted total modification cost is
much higher than the optimal one.

Subset Selection Heuristic (SH)

An intelligent selection heuristic should be able to identify the
reasons due to which a valid solution has not been produced in
the first step of the MS algorithm in Figure 5.6, and to find the
set of candidate applications which, if modified, could eliminate
the problem.

The failure to produce a valid solution can have two possible
causes: an initial mapping which meets the deadlines has not
been found, or the second criterion is not satisfied.

Let us investigate the first reason. If an application Γi is to meet
its deadline Di, all its processes Pj ∈ Γi have to be scheduled
inside their [ASAP, ALAP] intervals. InitialMappingScheduling (IMS)
fails to schedule a process inside its [ASAP, ALAP] interval, if
there is not enough slack available on any processor, due to
other processes scheduled in the same interval. In this situation
we say that there is a conflict with processes belonging to other
applications. We are interested to find out which applications
are responsible for conflicts encountered during the mapping
and scheduling of Γcurrent, and not only that, but also which ones
are flexible enough to be moved away in order to avoid these con-
flicts.

If it is not able to find a solution that satisfies the deadlines,
IMS will determine a metric ∆Γi

 that characterizes both the degree

CHAPTER 5

122

of conflict and the flexibility of each application Γi ∈ ψ in relation
to Γcurrent. A set of applications Ω will be characterized, in rela-
tion to Γcurrent, by the following metric:

. (5.2)

This metric ∆(Ω) will be used by our subset selection heuris-
tic in the case IMS has failed to produce a solution which satisfies
the deadlines. An application with a larger ∆Γi

 is more likely to
lead to a valid schedule if included in Ω.

Example 5.12: In Figure 5.8 we illustrate how this metric
is calculated. Applications A, B and C are implemented on a
system consisting of the three processors N1, N2 and N3. The
current application to be implemented is D. At a certain
moment, IMS comes to the point to map and schedule process
D1 ∈ D. However, it is not able to place it inside its [ASAP,
ALAP] interval, denoted in Figure 5.8 as I. The reason is that
there is not enough slack available inside I on any of the pro-
cessors, because processes A1, A2, A3 ∈ A, B1 ∈ B, and C1 ∈ C
are scheduled inside that interval. We are interested to
determine which of the applications A, B, and C are more
likely to lend free slack for D1, if remapped and rescheduled.

Therefore, we calculate the slack resulted after we move
away processes belonging to these applications from the
interval I. For example, the resulted slack available after
modifying application C (moving C1 either to the left or to the
right inside its own [ASAP, ALAP] interval) is of size |I| –
min(|C1

L|, |C1
R|). With C1

L (C1
R) we denote that slice of pro-

cess C1 which remains inside the interval I after C1 has been
moved to the extreme left (right) inside its own [ASAP, ALAP]
interval. |C1

L| represents the length of slice C1
L. Thus, when

considering process D1, ∆C will be incremented with δC
D1 =

max(|I| – min(|C1
L|, |C1

R|) – |D1|, 0). This value shows the
maximum theoretical slack usable for D1, that can be pro-

∆ Ω() ∆Γi

Γi Ω∈
∑=

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

123

duced by modifying the application C. By relating this slack
to the length of D1, the value δC

D1 also captures the amount of
flexibility provided by that modification.

The increments δB
D1 and δA

D1 to be added to the values of ∆B
and ∆A respectively, are also presented in Figure 5.8. IMS
then continues the evaluation of the metrics ∆ with the other
processes belonging to the current application D (with the
assumption that process D1 has been scheduled at the begin-
ning of interval I). Thus, as result of the failed attempt to
map and schedule application D, the metrics ∆A, ∆B, and ∆C
will be produced.

Figure 5.8: Metric for the Subset Selection Heuristic

A1

|I| = ALAP(D1) – ASAP(D1)
ALAP(C1)ASAP(C1)

C1
L

N1

N2

N3

B1

C1

A2 A3

D1

C1
R

ASAP(D1) ALAP(D1)

|C1| |C1|

δA
D1 = max(max(|I| – |B1| – min(|A1

L|, |A1
R|),

δC
D1 = max(|I| – min(|C1

L|, |C1
R|) – |D1|, 0)

δB
D1 = max(|I| – |A1| – min(|B1

L|, |B1
R|) – |D1|, 0);

D1 mapped on N1

D1 mapped on N3

|I| – min(|A2
L|, |A2

R |) – min(|A3
L|, |A3

R|)) P |D1|, 0)

CHAPTER 5

124

If the initial mapping was successful, the first step of MS could
fail during the attempt to satisfy the second criterion
(Figure 5.6). In this case, the metric ∆Γi

 is computed in a differ-
ent way. What ∆Γi

 will capture in this case, is the potential of an
application Γi to improve the metric C2 if remapped together
with Γcurrent. Therefore, we consider a total number of moves
from all the non-frozen applications in ψ. These moves are deter-
mined using the PotentialMoveC2 functions presented in
Section 5.4.2. Each such move will lead to a different mapping
and schedule, and thus to a different C2 value. Let us consider
δmove as the improvement on C2 produced by the currently con-
sidered move. If there is no improvement, δmove = 0. Thus, for
each move that has as subject Pj or mj ∈ Γi, we increment the
metric ∆Γi

 with the δmove improvement on C2.
As shown in the algorithm in Figure 5.6, MS starts by trying

an implementation of Γcurrent with Ω = ∅. If this attempt fails,
because of one of the two reasons mentioned above, the corre-
sponding metrics ∆Γi are computed for all Γi ∈ ψ.

Our heuristic SH will then start by finding the solution ΩAS

produced with the greedy heuristic AS (this will succeed if there
exists any solution). The total modification cost corresponding to
this solution is RAS = R(ΩAS) and the value of the metric ∆ is
∆AS = ∆(ΩAS).

SH now continues by trying to find a solution with a more
favorable Ω than ΩAS (a smaller total cost R). Therefore, the
thresholds Rmax = RAS and ∆min = ∆AS / n (for our experiments we
considered n = 2) are set. Sets of applications not fulfilling these
thresholds will not be investigated by MS.

For generating new subsets Ω, the function NextSubset now fol-
lows a similar approach like in the exhaustive search approach
ES, but in a reverse direction, towards smaller subsets (starting
with the set containing all non-frozen applications), and it will
consider only subsets with a smaller total cost than Rmax and a
larger ∆ than ∆min (a small ∆ means a reduced potential to elim-
inate the cause of the initial failure).

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

125

Each time a valid solution is found, the current values of Rmax

and ∆min are updated in order to further restrict the search
space. The heuristic stops when no subset can be found with
∆ > ∆min, or a certain imposed limit has been reached (e.g., on the
total number of attempts to find new subsets).

5.5 Experimental Results
In the following three sections we show a series of experiments
that demonstrate the effectiveness of the proposed approaches
and algorithms. The first set of results is related to the efficiency
of our mapping and scheduling algorithm and the iterative
design transformations proposed in Sections 5.4.1 and 5.4.2. The
second set of experiments evaluates our heuristics for minimiza-

Number of processes

A
ve

ra
ge

 p
er

ce
nt

ag
e

de
vi

at
io

n
[%

]

HCP

IM

80 160 240 320 400
0

2

4

6

8

10

12

Figure 5.9: Comparison of the IMS and HCP
Mapping Heuristics

S

CHAPTER 5

126

tion of the total modification cost presented in Section 5.4.3. As
a general strategy, we have evaluated our algorithms perform-
ing experiments on a large number of test cases generated for
experimental purpose. Finally, we have validated the proposed
approaches using a real-life example. All experiments were run
on a SUN Ultra 10 workstation.

5.5.1 IMS AND THE ITERATIVE DESIGN TRANSFORMATIONS

For the evaluation of our approach we used applications of 80,
160, 240, 320 and 400 processes, representing the application
Γcurrent, generated for experimental purpose. Thirty applications
were generated for each dimension, thus a total of 150 applica-
tions were used for experimental evaluation. We considered an
architecture consisting of ten nodes of different speeds. For the
communication channel we considered a transmission speed of
256 Kbps and a length below 20 meters. The maximum length of
the data field in a bus slot was 8 bytes. Throughout the experi-
ments presented in this section we have considered an existing
set of applications ψ consisting of 400 processes, with a schedule
table of 6 s on each processor, and a slack of about 50% of the
total schedule size. In this section we have also considered that
no modifications of the existing set of applications ψ are allowed
when implementing a new application. We will concentrate on
the aspects related to the modification of existing applications,
in the following section.

The first result concerns the quality of the designs produced
by our initial mapping and scheduling algorithm IMS. As dis-
cussed in Section 5.4.1, IMS uses the MPCP priority function
which considers particularities of the TDMA protocol. In our
experiments we compared the quality of designs (in terms of
schedule length) produced by IMS with those generated with the
original HCP algorithm proposed in [Jor97]. We have calculated
the average percentage deviations of the schedule length pro-
duced with HCP and IMS from the length of the best schedule

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

127

among the two. Results are depicted in Figure 5.9. In average, the
deviation from the best result is 3.28 times smaller with IMS than
with HCP. The average execution times for both algorithms are
under half a second for graphs with 400 processes.

For the next set of experiments we were interested to investi-
gate the quality of the design transformation heuristics dis-
cussed in Section 5.4.2, aiming at the optimization of the
objective function C. In order to compare this heuristic, imple-
mented in our mapping and scheduling approach MS, we have
developed two additional heuristics:

1. A Simulated Annealing strategy (SA) (see Appendix A), based
on the same moves as described in Section 5.4.2. SA is ap-
plied to the solution produced by IMS and aims at finding the
near-optimal mapping and schedule that minimizes the ob-
jective function C. The main drawback of the SA strategy is
that in order to find the near-optimal solution it needs very
large computation times. Such a strategy, although useful for
the final stages of the system synthesis, cannot be used in-
side a design space exploration cycle.

2. A so called Ad-hoc Mapping approach (AM) which is a simple,
straightforward solution to produce designs that, to a certain
degree, support an incremental design process. Starting
from the initial valid schedule of length S obtained by IMS for
a graph G with N processes, AM uses a simple scheme to re-
distribute the processes inside the [0, D] interval, where D is
the deadline of process graph G. AM starts by considering the
first process in topological order, let it be P1. It introduces af-
ter P1 a slack of size max(smallest process size of Γfuture, (D –
S) / N), thus shifting all descendants of P1 to the right (to-
wards the end of the schedule table). The insertion of slacks
is repeated for the next process, with the current, larger val-
ue of S, as long as the resulted schedule has a length S ≤ D.
Processes are moved only as long as their individual dead-
lines (if any) are not violated.

CHAPTER 5

128

AH
MH
SA

A
ve

ra
ge

 e
xe

cu
ti

on
 t

im
e

[m
in

u
te

s]

0

10

20

30

40

50

S

40 80 160 240 320
Number of processes

AH
MH
SA

40 80 160 240 320
Number of processes

0

20

40

60

80

100

120

140
A

ve
ra

ge
 p

er
ce

n
ta

ge
 d

ev
ia

ti
on

 [
%

]

Figure 5.10: Evaluation of the Design Transformation
Heuristics

a) Deviation of the objective function obtained with

b) Execution times

MS and AM from that obtained with SA

M

S

SM

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

129

Our heuristic (MS), proposed in Section 5.4.2, as well as SA and
AM have been used to map and schedule each of the 150 process
graphs on the target system. For each of the resulted designs,
the objective function C has been computed. Very long and
expensive runs have been performed with the SA algorithm for
each graph and the best ever solution produced has been consid-
ered as the near-optimum for that graph. We have compared the
objective function obtained for the 150 process graphs consider-
ing each of the three heuristics. Figure 5.10a presents the aver-
age percentage deviation of the objective function obtained with
the MS and AM from the value of the objective function obtained
with the near-optimal scheme (SA). We have excluded from the
results in Figure 5.10a, 37 solutions obtained with AM for which
the second design criterion has not been met, and thus the objec-
tive function has been strongly penalized. The average run-
times of the algorithms are presented in Figure 5.10b. The SA

approach performs best in terms of quality at the expense of a
large execution time: The execution time can be up to 45 min-
utes for large graphs of 400 processes. The important aspect is
that MS performs very well, and is able to obtain good quality
solutions, very close to those produced with SA, in a very short
time. AM is, of course, very fast, but since it does not address
explicitly the two design criteria presented in Section 5.3 it has
the worst quality of solutions, as expressed by the objective func-
tion.

The most important aspect of the experiments is determining
to which extent the design transformations proposed by us, and
the related heuristic, really facilitate the implementation of
future applications. To find this out, we have mapped applica-
tions of 80, 160, 240 and 320 nodes representing the Γcurrent

application on top of ψ (the same ψ as defined for the previous
set of experiments). After mapping and scheduling each of these
graphs we have tried to add a new application Γfuture to the
resulted system. Γfuture consists of a process graph of 80 pro-
cesses, randomly generated according to the following specifica-

CHAPTER 5

130

tions: St={20, 50, 100, 150, 200 ms}, fSt(St) = {0.1, 0.25, 0.45, 0.15,
0.05}, Sb = {2, 4, 6, 8 bytes}, fSb(Sb) = {0.2, 0.5, 0.2, 0.1}, Tmin = 250
ms, tneed = 100 and bneed = 20 ms.

The experiments have been performed two times, using first
MS and then AM for mapping Γcurrent. In both cases we were inter-
ested if it is possible to find a correct implementation for Γfuture

on top of Γcurrent using the initial mapping and scheduling algo-
rithm IMS (without any modification of ψ or Γcurrent). Figure 5.11
shows the percentage of successful implementations of Γfuture in
the two cases. In the case Γcurrent has been implemented with MS,
this means using the design criteria and metrics proposed in
this chapter, we were able to find a valid schedule for 65% of the
total cases. However, using AM to map Γcurrent, has led to a situa-
tion where IMS is able to find correct solutions in only 21% of the
cases. Another conclusion from Figure 5.11 is that when the
total slack available is large, as in the case Γcurrent has only 80
processes, it is easy for MS and, to a certain extent, even for AM to
find a mapping that allows adding future applications. However,

MH
AH

80 160 240 320
0

20

40

60

80

100

120

Number of processes in Γcurrent

%
 o

f
su

cc
es

sf
u

l i
m

pl
em

en
ta

ti
on

s
of

 Γ
fu

tu
re

Figure 5.11: Percentage of Future Applications
Successfully Implemented

S

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

131

as Γcurrent grows to 240 processes, only MS is able to find an
implementation of Γcurrent that supports an incremental design
process, accommodating the future application in more then
60% of the cases. If the remaining slack is very small, after we
map a Γcurrent of 320 processes, it becomes practically impossible
to map new applications without modifying the current system.

5.5.2 MODIFICATION COST MINIMIZATION HEURISTICS

For this set of experiments we first used the same 150 applica-
tions as in the previous section, consisting of 80, 160, 240, 320
and 400 processes, for the application Γcurrent. We also considered
the same system architecture as presented there.

The first results concern the quality of the solution obtained
with our mapping strategy MS using the search heuristic SH

compared to the case when the simple greedy approach AS and
the exhaustive search ES are used. For the existing applications
we have generated five different sets ψ, consisting of different
numbers of applications and processes, as follows: 6 applications
(320 processes), 8 applications (400 processes), 10 applications
(480 processes), 12 applications (560 processes), 14 applications
(640 processes). Each application had an associated modification
cost, assigned manually, in the range 10 to 100. The available
slack is of about 50% of the total schedule size. The dependen-
cies between applications (in the sense introduced in
Section 2.3.2) were such that the total number of possible sub-
sets Ω resulted for each set ψ were 32, 128, 256, 1024, and 4096,
respectively. We have considered that the future applications,
Γfuture, are characterized by the following parameters: St = {20,
50, 100, 150, 200 ms}, fSt(St) = {0.1, 0.25, 0.45, 0.15, 0.05}, Sb = {2,
4, 6, 8 bytes}, fSb

(Sb) = {0.2, 0.5, 0.2, 0.1}, Tmin = 250 ms,
tneed = 100 ms and bneed = 20 ms.

MS has been used to produce a valid solution for each of the
150 applications representing Γcurrent, on each of the target con-
figurations ψ, using the ES, AS and SH approaches to subset selec-

CHAPTER 5

132

0

200

400

600

800

1000

1200

320 400 480 560 640

AH
SH
ES

Figure 5.12: Evaluation of the Modification Cost
Minimization Heuristics

b) Execution times

0

20

40

60

80

100

120

140

320 400 480 560 640

AH

SH

ES

A
ve

ra
ge

 e
xe

cu
ti

on
 t

im
e

[m
in

u
te

s]

320(6) 400(8) 480(10) 560(12) 640(14)

1200

1000

800

600

400

200

0

A
ve

ra
ge

 m
od

if
ic

at
io

n
 c

os
t

R
(Ω

)

320(6) 400(8) 480(10) 560(12) 640(14)

120

100

80

60

40

20

0

140

Number of processes (applications) in ψ

Number of processes (applications) in ψ

a) Modification cost obtained with the
AS, SH, and ES heuristics

AS

AS

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

133

tion. Figure 5.12a compares the three approaches based on the
total modification cost needed in order to obtain a valid solution.
The exhaustive approach ES is able to obtain valid solutions
with an optimal (smallest) modification cost, while the greedy
approach AS produces in average 3.12 times more costly modifi-
cations in order to obtain valid solutions. However, in order to
find the optimal solution, ES needs large computation times, as
shown in Figure 5.12b. For example, it can take more than 2
hours in average to find the smallest cost subset to be remapped
that leads to a valid solution in the case of 14 applications (640
processes). We can see that the proposed heuristic SH performs
well, producing close to optimal results with a good scaling for
large application sets. For the results in Figure 5.12 we have
eliminated those situations in which no valid solution could be
produced by MS.

Finally, we have repeated the last set of experiments dis-
cussed in the previous section (the experiments leading to the
results in Figure 5.11). However, in this case, we have allowed
the current system (consisting of ψ ∪ Γcurrent) to be modified
when implementing Γfuture. If the mapping and scheduling heu-
ristic is allowed to modify the existing system then we are able
to increase the total number of successful attempts to imple-
ment application Γfuture from 65% to 77.5%. For the case with
Γcurrent consisting of 160 processes (when the amount of available
resources for Γfuture is small) the increase is from 60% to 92%.
Such an increase is, of course, expected. The important aspect,
however, is that it is obtained not by randomly selecting old
applications to be modified, but by performing this selection
such that the total modification cost is minimized.

5.5.3 THE VEHICLE CRUISE CONTROLLER

As a real-life case study, we have considered the cruise controller
(CC) presented in Section 2.3.3 in order to evaluate our
approaches. For the cruise controller we have used:

CHAPTER 5

134

 • the un-mapped model of the cruise controller presented in
Figure 2.9 on page 42, with 32 processes and two conditions,

 • the hardware architecture in Figure 2.7a on page 40, consist-
ing of five nodes interconnected using a bus implementing
the time-triggered protocol,

 • and the software architecture for time-driven systems intro-
duced in Section 3.3.

 • We have considered a transmission speed of the communica-
tion channel of 256 Kbps and the frequency of the TTP con-
troller was chosen to be 20 MHz.

 • The period of the CC was chosen to be 300 ms, equal to the
deadline.

The system ψ, representing the applications already running
on the four nodes, has been modeled as a set of 80 processes with
a schedule table of 300 ms and leaving a total of 40% slack. The
CC is the Γcurrent application to be implemented. We have also
generated 30 future applications of 40 processes each, with the

ABS TCM ECM ETM ...

TTP bus

Cruise Controller

Figure 5.13: Implementation of the Cruise Controller

Future application

CEM

INCREMENTAL MAPPING FOR TIME-DRIVEN SYSTEMS

135

general characteristics close to those of the CC, which are typical
for automotive applications. We have first mapped and sched-
uled the CC on top of ψ, using the ad-hoc strategy (AM) and then
our MS algorithm. On the resulted systems, consisting of ψ ∪ CC,
we tried to implement each of the 30 future applications. First,
we considered a situation in which no modifications of the exist-
ing system are allowed when implementing the future applica-
tions. In this case, we were able to implement 21 of the 30 future
applications after implementing the CC with MS, while using AM

to implement the CC, only 4 of the future applications could be
mapped. When modifications of the current system were
allowed, using MS, we were able to map 24 of the 30 future appli-
cations on top of the CC.

As our experiments have shown, the design criteria proposed
in this chapter are able to guide our mapping and scheduling
approaches to implementations which support an incremental
design process. This means that the modifications performed to
the existing applications are minimized, and that new function-
ality, later to be added, can be easily accommodated.

The next part of the thesis will address the mapping and
scheduling in the context of event-driven systems.

 PART III
Event-Driven Systems

139

Chapter 6
Schedulability Analysis and
Bus Access Optimization for

Event-Driven Systems

IN THE PREVIOUS part of the thesis we have addressed the
issue of non-preemptive static process scheduling and communi-
cation synthesis using the TTP as the communication infrastruc-
ture.

In the third part of the thesis, consisting of this and the next
chapter, we consider event-driven distributed real-time systems
where the activation of processes is event-triggered, while the
communications are time-triggered, according to the TTP.

This chapter is structured as follows. The next section pre-
sents background and related work in the area of schedulability
analysis. In Section 6.2 we go into some details concerning the
particular schedulability analysis technique that is used as a
starting point in our later discussions. Section 6.3 presents the
schedulability analysis we have developed for systems with both
control and data dependencies modeled as a set of conditional
process graphs. Section 6.4 shows how the current state-of-the-

CHAPTER 6

140

art schedulability analysis for distributed real-time systems can
be extended to consider the time triggered protocol. Once realis-
tic communication aspects are captured by the schedulability
analysis, they can be used to drive the communication synthesis
process described in Section 6.7. Finally, Section 6.8 presents
the experimental results obtained for the approaches presented
in this chapter.

6.1 Background
Preemptive scheduling of independent processes with static pri-
orities running on single-processor architectures has its roots in
the work of Liu and Layland [Liu73]. The approach has been
later extended to accommodate more general computational
models and has also been applied to distributed systems
[Tin94a]. The reader is referred to [Aud95], [Bal98], [Sta93] for
surveys on this topic.

In [Yen97] performance estimation is based on a preemptive
scheduling strategy with static priorities using rate monotonic
analysis. In [Lee99] an earlier deadline first strategy is used for
non-preemptive scheduling of processes with possible data
dependencies. Preemptive and non-preemptive static scheduling
are combined in the co-synthesis environment described in
[Dav98], [Dav99].

In many of the previous scheduling approaches researchers
have assumed that processes are scheduled independently. How-
ever, this is not the case in reality, where process sets can exhibit
both data and control dependencies. Moreover, knowledge about
these dependencies can be used in order to improve the accuracy
of schedulability analyses and the quality of the produced sched-
ules.

One way of dealing with data dependencies between processes
with static priority based scheduling has been indirectly
addressed by the extensions proposed for the schedulability

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

141

analysis of distributed systems through the use of the release jit-
ter [Tin94a]. Release jitter is the worst case delay between the
arrival of a process and its release (when it is placed in the
ready-queue for the processor) and can include the communica-
tion delay due to the transmission of a message on the commu-
nication channel.

In [Tin94b] and [Yen98] time offset relationships and phases,
respectively, are used in order to model data dependencies. Off-
set and phase are similar concepts that express the existence of
a fixed interval in time between the arrivals of sets of processes.
The authors show that by introducing such concepts into the
computational model, the pessimism of the analysis is signifi-
cantly reduced when bounding the time behavior of the system.
The concept of dynamic offsets has been later introduced in
[Pal98] and used to model data dependencies [Pal99].

When control dependencies exist then, depending on condi-
tions, only a subset of the set of processes is executed during an
invocation of the system. Modes have been used to model a cer-
tain class of control dependencies [Foh93]. Such a model basi-
cally assumes that at the starting of an execution cycle, a
particular functionality is known in advance and is fixed for one
or several cycles until another mode change is performed. How-
ever, modes cannot handle fine grained control dependencies, or
certain combinations of data and control dependencies. Careful
modeling using the periods of processes (lower bound between
subsequent re-arrivals of a process) can also be a solution for
some cases of control dependencies [Ger96]. If, for example, we
know that a certain set of processes will only execute every sec-
ond cycle of the system, we can set their periods to the double of
the period of the rest of the processes in the system. However,
using the worst case assumption on periods leads very often to
unnecessarily pessimistic schedulability evaluations. More
refined process models can produce much better schedulability
results, as will be later shown in the thesis. Recent works
[Bar98a], [Bar98b] aim at extending the existing models to han-

CHAPTER 6

142

dle control dependencies. In [Bar98b] Baruah introduces the
recurring real-time task model that is able to capture lower level
control dependencies, and presents an exponential-time analy-
sis for uniprocessor systems.

As mentioned in Section 4.1, researchers have initially
ignored communication aspects when analyzing real-time sys-
tems. However, we have to mention here some results obtained
in extending real-time schedulability analysis so that network
communication aspects can be handled. In [Tin95], for example,
the CAN protocol is investigated while the work reported in
[Erm97] considers systems based on the ATM protocol. Analysis
for a simple time-division multiple access (TDMA) protocol is pro-
vided in [Tin94a] that integrates processor and communication
schedulability and provides a “holistic” schedulability analysis
in the context of distributed real-time systems. Other protocols
have also been considered, like the Token Ring [Str89], and the
FDDI network architecture [Agr94].

The problem of how to allocate priorities to a set of distributed
processes is discussed in [Gut95]. Their priority assignment
heuristic is based on the schedulability analysis from [Tin94a].

In this third part of the thesis we consider the time-triggered
protocol (TTP) [Kop03] as the communication infrastructure for a
distributed real-time system. However, the research presented
is also valid for any other TDMA-based bus protocol that sched-
ules the messages statically based on a schedule table like, for
example, the SAFEbus [Hoy92] protocol used in the avionics
industry.

6.2 Response Time Analysis
In this part of the thesis, we consider that processes are sched-
uled according to a fixed-priority preemptive scheduling policy
(FPS). This is the most widely used preemptive scheduling

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

143

approach, whereby each process has a fixed (static) priority
which is computed off-line. The processes ready for execution
are then executed according to their priority.

6.2.1 BASIC CONCEPTS

The aim of a schedulability analysis is to determine sufficient
and necessary conditions under which an application is schedu-
lable. An application is schedulable if there exists at least one
scheduling algorithm that is able to produce a feasible schedule.
A schedule is feasible if all processes can be completed within
the specified constraints.

There are basically two approaches to the schedulability anal-
ysis in the context of fixed-priority preemptive scheduling: utili-
zation-based tests, and response-time analysis. The utilization
tests for FPS [Liu73], [Bin01], [Leh89] are not exact (i.e., are only
necessary, but not both necessary and sufficient), and/or are not
applicable to a more general process model, as we will introduce
below.

Thus, in this thesis we will use a response time analysis
[Aud91] approach in order to check the exact feasibility of a set
of processes. The approach has two steps:

1. In the first step, the analysis derives the worst-case response
time of each process (the time it takes from the moment is
ready for execution, until it has finished executing).

2. The second step compares the worst case response time of
each process to its deadline and, if the response times are
smaller or equal to the deadlines, the system is schedulable.

Before going into the details of the response time analysis, let
us present the basic concepts we will use, illustrated also in
Figure 6.1 (in addition to those introduced in Section 2.3.1 for
the application model):

CHAPTER 6

144

 • Arrival time, ai: the time when a process Pi becomes ready
for execution. Also known as request time or release time.

 • Start time: the time when a process starts its execution.
 • Finishing time: the time when a process finishes its execu-

tion.
 • Response time, ri: the time it takes from the arrival of the

process Pi, until it finishes executing.
 • Interference, wi: the time a process Pi is interrupted by

higher priority processes during its execution.
 • Blocking time, Bi: the time a process Pi has to wait for lower

priority processes that are in their critical section and cannot
be interrupted.

 • Release jitter, Ji: the delay between the arrival of process Pi

and the start of its execution.
 • Offset, Oi: the earliest possible arrival time of process Pi, rel-

ative to the start of the schedule (also known as phase).
 • Relative offset, Oij: a positive value representing the relative

offset of process Pj to Pi.
 • Transmission delay, Cm: the time it takes for a message m to

reach the destination controller, once it has been sent on the
bus (also known as propagation delay).

 • Queuing delay, wm: is the delay experienced by m at the com-
munication controller, from the time it was produced by the
sender process, until is being sent.

 • Communication delay, rm: is the time it takes for a message
m to reach the desalination process, from the moment it has
been produced by the sender process. It is also known as the
end-to-end communication delay, or response time (similar,
conceptually, to the response time of a process).

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

145

F
ig

u
re

 6
.1

:
Il

lu
st

ra
ti

on
 o

f
S

ch
ed

u
la

bi
li

ty
 C

on
ce

pt
s

P
3

N
1

N
2

B
u

s

b
)

A
rc

h
it

ec
tu

re

C
1

C
m

2
C

m
1

J
2

C
2

w
1

J
3P
1

P
2

m
2

m
1

N
1

N
2

B
u

s

c)
S

ch
ed

u
le

O
1

O
2

O
3

O
1,

2
=

O
1,

3

r 2

r 3

w
m

1

a 2

a 1

st
ar

t
ti

m
e

fi
n

is
h

ti
m

e

a 3

P
1

P
2

P
3

m
1

m
2

a)
A

pp
li

ca
ti

onP
ri

or
it

y

m
2

m
1

P
2

P
3

h
ig

h

lo
w

P
3

N
1

N
2

B
u

s

b
)

A
rc

h
it

ec
tu

re

C
1

C
m

2
C

m
1

J
2

C
2

w
1

J
3P
1

P
2

m
2

m
1

N
1

N
2

B
u

s

c)
S

ch
ed

u
le

O
1

O
2

O
3

O
1,

2
=

O
1,

3

r 2

r 3

w
m

1

a 2

a 1

st
ar

t
ti

m
e

fi
n

is
h

ti
m

e

a 3

P
1

P
2

P
3

m
1

m
2

a)
A

pp
li

ca
ti

onP
ri

or
it

y

m
2

m
1

P
2

P
3

h
ig

h

lo
w

P
ri

or
it

y

m
2

m
1

P
2

P
3

h
ig

h

lo
w

CHAPTER 6

146

6.2.2 RESPONSE TIME ANALYSIS OVERVIEW

This section presents an overview of the response time analysis
used in this thesis. We start with the basic response time analy-
sis, as outlined in [Aud91]. In the next sections, we extend this
analysis for applications with data and control dependencies,
implemented on distributed architectures.

Figure 6.2 presents an overview of the schedulability analysis
techniques proposed in this chapter (the analyses in the grey
boxes are our contribution). Basically, there are two approaches
to extending the schedulability analysis. The first category, pre-
sented in sections 6.2.4 and 6.3, have focused on reducing the
pessimism of the analysis by using the information related to
the data and control dependencies, respectively. Sections 6.4 and
6.5 constitute the second category, which has extended the anal-
ysis to handle distributed architectures, and the particularities
of TTP and CAN protocols.

The analyses presented are structured as follows:

 • Section 6.2.3 presents, as mentioned, the basic response time
analysis for calculating the worst-case response time ri of a
process Pi. This analysis does not take into account the data
and control dependencies that can exist between processes,
and it is applicable only to uni-processor systems.

 • Section 6.2.4 extends the previous analysis using the infor-
mation about data dependencies, captured by the offsets, in
order to reduce the pessimism1 of the analysis. Together with
the analysis, in Section 6.2.4 we also present an algorithm
(DelayEstimate in Figure 6.3) that derives values for offsets
such that the schedulability of the application is improved.

 • Section 6.3 considers conditional process graphs, that cap-
ture not only the dataflow but also the flow of control. The

1. An analysis A is less pessimistic than an analysis B if it indicates that
an application, considered by B not to be schedulable, is, in fact, sched-
ulable.

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

147

F
ig

u
re

 6
.2

:
O

ve
rv

ie
w

 o
f

th
e

S
ch

ed
u

la
bi

li
ty

 A
n

al
ys

is
 A

pp
ro

ac
h

es

B
as

ic
 r

es
po

ns
e

ti
m

e
an

al
ys

is

A
na

ly
si

s
w

it
h

da
ta

 d
ep

en
de

nc
ie

s

A
na

ly
si

s
w

it
h

co
n

tr
ol

 d
ep

en
de

n
ci

es
A

na
ly

si
s

fo
r

di
st

ri
bu

te
d

sy
st

em
s

A
n

al
ys

is

fo
r

T
D

M
A

A
na

ly
si

s
fo

r
C

A
N

A
na

ly
si

s
fo

r
T

T
P

M
or

e
co

m
pl

ex
 a

rc
hi

te
ct

u
re

s

Reduced pessimism

6.
2.

3

6.
2.

4

6.
3

6.
4

6.
5

U
se

d
in

 6
.7

U
se

d
in

ch

ap
te

rs
8

an
d

9

E
xt

en
ds

6.
4.

2

6.
4.

1

B
as

ic
 r

es
po

ns
e

ti
m

e
an

al
ys

is

A
na

ly
si

s
w

it
h

da
ta

 d
ep

en
de

nc
ie

s

A
na

ly
si

s
w

it
h

co
n

tr
ol

 d
ep

en
de

n
ci

es
A

na
ly

si
s

fo
r

di
st

ri
bu

te
d

sy
st

em
s

A
n

al
ys

is

fo
r

T
D

M
A

A
na

ly
si

s
fo

r
C

A
N

A
na

ly
si

s
fo

r
T

T
P

M
or

e
co

m
pl

ex
 a

rc
hi

te
ct

u
re

s

Reduced pessimism

6.
2.

3

6.
2.

4

6.
3

6.
4

6.
5

U
se

d
in

 6
.7

U
se

d
in

ch

ap
te

rs
8

an
d

9

E
xt

en
ds

B
as

ic
 r

es
po

ns
e

ti
m

e
an

al
ys

is

A
na

ly
si

s
w

it
h

da
ta

 d
ep

en
de

nc
ie

s

A
na

ly
si

s
w

it
h

co
n

tr
ol

 d
ep

en
de

n
ci

es
A

na
ly

si
s

fo
r

di
st

ri
bu

te
d

sy
st

em
s

A
n

al
ys

is

fo
r

T
D

M
A

A
na

ly
si

s
fo

r
C

A
N

A
na

ly
si

s
fo

r
T

T
P

M
or

e
co

m
pl

ex
 a

rc
hi

te
ct

u
re

s

Reduced pessimism

6.
2.

3

6.
2.

4

6.
3

6.
4

6.
5

U
se

d
in

 6
.7

U
se

d
in

ch

ap
te

rs
8

an
d

9

E
xt

en
ds

6.
4.

2

6.
4.

1

CHAPTER 6

148

analysis in the Section 6.2 is extended to take into account
the information related to the conditions, captured by a CPG,
with the aim of reducing the pessimism of the analysis.

 • Section 6.4 further extends the analysis to consider applica-
tions mapped on distributed architectures. It does this by
considering that the release jitter Ji of a receiver process Pi

depends on the communication delay of the incoming mes-
sage m (also called response time rm of message m). In addi-
tion, in Section 6.4 we show how the details of a
communication protocol have to be considered when deter-
mining the communication delay of a message. In particular,
we present the extensions for a simple TDMA protocol and for
the CAN bus. For each protocol, we calculate differently the
transmission delay Cm, and the worst-case queuing delay wm

of a message m, needed to determine the communication
delay, as expressed by Equation 6.4 on page 162.

 • Section 6.5 presents the analysis we have developed for the
time-triggered protocol. It builds on, and extends, the analy-
sis for a simple TDMA protocol presented in Section 6.4. Four
approaches to the scheduling of event-triggered messages
over the static TTP bus are presented, with their correspond-
ing analysis for the communication delay (implying deriving,
for each case, Cm and wm).

6.2.3 BASIC RESPONSE TIME ANALYSIS

As mentioned earlier, in order to find out if an application is
schedulable, a response time analysis determines the worst-case
response time of each process, and then compares it to its dead-
line. If all response times are smaller than or equal to the dead-
lines, then the application is schedulable.

Thus, the response time analysis in [Aud91] uses the following
equation for determining the response time ri of a process Pi:

(6.1)ri Ci
ri
Tj
------ Cj

Pj∀ hp Pi()∈
∑+=

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

149

where Ci is the worst-case execution time of process Pi, Tj is the
period of process Pj, and hp(Pi) denotes the set of processes that
have a priority higher than the priority of Pi.

The summation term, representing the interference wi of
higher priority processes on Pi, increases monotonically in ri,
thus solutions can be found using a recurrence relation. More-
over, the recurrence relations that calculate the worst case
response time are guaranteed to converge if the processor utili-
zation is under 100%.

All the response time analyses presented in this chapter are
under the assumption that the deadline of a process is smaller
than or equal to its period. However, in Section 6.5.5 we will
show how this assumption can be relaxed.

6.2.4 SCHEDULABILITY ANALYSIS WITH DATA DEPENDENCIES

The pessimism of the previous analysis can be reduced by using
the information related to the precedence relations between pro-
cesses. The basic idea is to exclude certain worst case scenarios,
from the critical instant analysis, which are impossible due to
precedence constraints.

Methods for schedulability analysis of data dependent pro-
cesses with static priority preemptive scheduling have been pro-
posed in [Yen98], [Tin94b], [Pal98], [Pal99]. They use the
concept of offset (or phase), in order to handle data dependencies.
[Tin94b] shows that the pessimism of the analysis is reduced
through the introduction of offsets. The offsets have to be deter-
mined by the designer.

The authors in [Yen98] provide a framework that iteratively
finds the phases (offsets) for all processes, and then feeds them
back into the schedulability analysis which in turn is used again
to derive better phases. Thus, the pessimism of the analysis is
iteratively reduced. In their analysis [Yen98], the response time
of a process Pi is:

CHAPTER 6

150

, (6.2)

where Ji is the jitter of process Pi (the worst case delay between
the activation of the process and the start of its execution), and
Ci is its worst case execution time. The interference wi due to
other processes running on the same processor is given by:

. (6.3)

In Equation 6.3, the blocking factor Bi represents interference
from lower priority processes that are in their critical section
and cannot be interrupted. The second term captures the inter-
ference from higher priority processes Pj ∈ hp(Pi), where Oij is a
positive value representing the relative offset of process Pj to Pi.
The operator is the positive ceiling, which returns the
smallest integer greater than x, or 0 if x is negative.

Response Time Analysis Algorithm

In [Yen98] an application is modeled as a set S of n process
graphs τi, i = 1, 2, ..., n. The application model assumed and the
definition of a process graph is similar to our CPG, but without
considering any conditions. The aim of the schedulability
analysis in [Yen98] is to derive an as tight as possible worst case
delay on the execution time of each of the process graphs in the
application. This delay estimation is done using the algorithm
DelayEstimate described in Figure 6.3.

At the core of this algorithm is a worst case response time cal-
culation based on offsets, similar to the analysis in [Tin94b].
Thus, in the LatestTimes function (called in line 8 of
DelayEstimate), worst-case response times and upper bounds for
the offsets are calculated, while the EarliestTimes function (line 9)
calculates the lower bounds of the offsets.

The LatestTimes function is a modified critical-path algorithm
that calculates for each node of the graph the longest path to the

ri Ji wi Ci+ +=

wi Bi
wi Jj Oij–+

Tj

0
Cj

Pj∀ hp Pi()∈
∑+=

x 0

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

151

sink node (see Section 4.2.2 for the definition of the critical
path). Hence, during the topological traversal of the graph τ
within LatestTimes, for each process Pi, the worst case response
time ri is calculated according to the Equation 6.2. This value is
based on the values of the offsets known so far. Once an ri is cal-
culated, it can be used to determine and update offsets for other
successor processes. Accordingly, the EarliestTimes function deter-
mines the lower bounds on the offsets. The influence on graph τ
from other graphs in the application is considered in both of the
functions mentioned earlier.

Figure 6.3: Delay Estimation and Schedulability
Analysis for Process Graphs

DelayEstimate(process graph τ, application S)
1 -- derives the worst case delay of a process graph τ considering
2 -- the influence from all other process graphs in the application S
3 for each pair (Pi, Pj) in τ do
4 maxsep[Pi, Pj] = ∞
5 end for
6

7 repeat
8 LatestTimes(τ)
9 EarliestTimes(τ)
10 for each Pi ∈ τ do
11 MaxSeparations(Pi)
12 end for
13 until maxsep is not changed or limit reached
14 return the worst case delay δτ of the graph τ
end DelayEstimate

SchedulabilityTest(application S)
1 -- derives the worst case delay for each process graph in the system
2 -- and verifies if the deadlines are met
3 for each process graph τi ∈ S do
4 DelayEstimate(τi, S)
5 end for
6 if all process graphs meet their deadline then application S is schedulable
end SchedulabilityTest

CHAPTER 6

152

These calculations can be improved by realizing that for a pro-
cess Pi, there might exist a process Pj mapped on the same pro-
cessor, with priorityPi

 < priorityPj, such that their execution
windows never overlap. In this case, the term in the
Equation 6.3 that expresses the influence of Pj on the execution
of Pi can be dropped, resulting in a tighter worst case response
time calculation. This situation is expressed through the so
called maxsep table, computed by the MaxSeparations function,
whose value maxsep[Pi, Pj] is less than or equal to 0 if the two pro-
cesses never overlap during their execution (lines 10–12 of
DelayEstimate). The term maxsep stands for maximum separation,
an analysis modified from [Mc92] which builds the maxsep table
based on the worst case execution times and offsets determined
in EarliestTimes and LatestTimes.

Having a better view on the maximum separation between
each pair of processes, tighter worst case execution times and
offsets can be derived, which in turn contribute to the update of
the maxsep table. This iterative tightening process is repeated
until there is no modification to the maxsep table, or a certain
imposed limit on the number of iterations is reached (line 13).

Finally, the DelayEstimate function returns the worst-case
delay δτ estimated for a process graph τ, as the time when the
sink node of τ finishes its execution (line 14). Based on the
delays produced by DelayEstimate, the function SchedulabilityTest in
Figure 6.3 concludes on the schedulability of the application.

6.3 Schedulability Analysis under Control and
Data Dependencies

In the previous sections we were interested to extend the basic
schedulability analysis to handle data dependencies.

In this section, we are interested further extend the analysis
to handle not only data but also control dependencies. This

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

153

means developing a schedulability analysis for an application
modeled as a set of conditional process graphs.

Example 6.1: To show the relevance of our problem, let us
consider the example depicted in Figure 6.4, where we have
an application modeled as two conditional process graphs G1
and G2 with a total of 9 processes (processes P0, P8, P9 and
P12 are dummy processes and are not counted), and one con-
dition. The processes are mapped on three different proces-
sors as indicated by the shading, and the worst case
execution time in milliseconds for each process on its respec-
tive processor is depicted to the left of each node. G1 has a
period of 200 ms, G2 has a period of 150 ms. The deadlines
are 100 ms on G1 and 90 ms on G2.

C C

P4

P5

P11P10

P6

P8

P1

P3

P2

P7

P0

P9

P12

G1 G2

27

30

25

24

19

30

22

25 32

Figure 6.4: Application with Control
and Data Dependencies

TG1
 = 200

DG1
 = 100

TG2
 = 150

DG2
 = 90

CHAPTER 6

154

Table 6.1 presents the worst-case delays of the two graphs.
In the column labelled “no conditions” we have the results for
the case when the analysis is applied to the set of processes,
ignoring control dependencies. This results in a worst case
delay of 120 ms for G1 and 82 ms for G2. Hence, the applica-
tion is considered not to be schedulable. This analysis
assumes as a worst case scenario the possible activation of
all nine processes, during each execution of the application.
This is the solution which will be obtained using a dataflow
graph representation of the application.

However, considering the CPG G1 in Figure 6.4, it is easy to
observe that process P3 on the one side and processes P2 and
P4 on the other side will not be activated during the same
period of G1. Making use of this information for the analysis
we obtain a worst case delay of 100 ms for G1, as shown in
Table 6.1 in the column headed “conditions,” which indicates
that the application is, in fact, schedulable.

Section 2.3.1 has presented the conditional process graph rep-
resentation. Before introducing our schedulability analysis for
CPGs, we reinforce two concepts: the unconditional subgraphs
and the process guards.

Depending on the values calculated for the conditions, differ-
ent alternative paths through a conditional process graph are
activated for a given activation of the application. To model this,
a logical expression XPi

, called guard (introduced in

Table 6.1: Worst-Case Delays for the Application in Figure 6.4

CPG Worst Case Delays

no conditions conditions

G1 120 100

G2 82 82

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

155

Section 2.3.1), can be associated to each node Pi in the graph. It
represents the necessary condition for the respective process to
be activated.

Example 6.2: In Figure 6.5, for example, XP4
 = C ∧ D,

XP5
= C, XP9

 = true, XP11
 = true, and XP12

 = K.

We call an alternative path through a conditional process
graph, resulting from a combination of conditions, an uncondi-
tional subgraph, denoted by g.

Example 6.3: The CPG G1 in Figure 6.5 has three uncondi-
tional subgraphs, corresponding to the following three com-
binations of conditions: C ∧ D, C ∧ D, and C. The
unconditional subgraph corresponding to the combination
C ∧ D in the CPG G1 consists of processes P1, P2, P4, P6, P7, P9
and P10.

Figure 6.5: Example of Two CPGs

C

C

P7

P10

P13P12

P1

P5

P11

P14

G1 G2

P4P3

P2

P6
P8

D D

KK

P9

CHAPTER 6

156

The guards of each process, as well as the unconditional sub-
graphs resulting from a conditional process graph G, can be
determined through a simple recursive topological traversal of G.

In the following sections we present four approaches to the
analysis of conditional process graphs. There are two extreme
solutions to this problem:

 • The first one, called Ignoring Conditions (IC), ignores control
dependencies and applies the schedulability analysis for the
(unconditional) process graphs.

 • At the other end, the Brute Force Algorithm (BF) applies the
schedulability analysis after each of the CPGs in the applica-
tion have been decomposed in their constituent uncondi-
tional subgraphs.

The other two solutions proposed are in-between solutions:

 • Conditions Separation (CS) is similar to Ignoring Conditions,
but uses the knowledge about the conditions in order to
update the maxsep table: maxsep[Pi, Pj] = 0 if processes Pi and
Pj are on different conditional paths (see Section 6.2.4,
Figure 6.3).

 • Relaxed Tightness Analysis (with two variants: RT1, RT2) is
similar to the Brute Force Algorithm, but tries to reduce the
execution time by removing the iterative tightening loop
(hence the name relaxed tightness) in the DelayEstimation

function in Figure 6.3.

6.3.1 IGNORING CONDITIONS (IC)

A straightforward approach to the schedulability analysis of
applications represented as CPGs is to ignore control dependen-
cies and to apply the schedulability analysis as described in
Section 6.2.4 (the algorithm SchedulabilityTest in Figure 6.3).

This means that the conditional edges in the CPGs are consid-
ered like simple edges and the conditions in the model are
dropped (line 3 of the algorithm in Figure 6.6). What results is

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

157

an application S consisting of simple process graphs τi, each one
derived from a CPG Gi of the given application Γ. The application
S can then be analyzed (line 4) using the algorithm in
Figure 6.3. It is obvious that if the application S is schedulable,
the application Γ is also schedulable (line 5).

This approach, which we call IC, is, of course, very pessimistic.
However, this is the current practice when worst-case arrival
periods are considered and classical data flow graphs are used
for modeling and scheduling [Yen98], [Tin94b].

6.3.2 BRUTE FORCE SOLUTION (BF)

The pessimism of the IC approach can be reduced by considering
the conditions captured by a conditional process graph model. A
simple, brute force solution is to apply the schedulability analy-
sis presented in Section 6.2.4, after the CPGs have been decom-
posed into their constituent unconditional subgraphs.

Consider an application Γ which consists of n CPGs Gi, i = 1,
2, ..., n. Each CPG Gi can be decomposed into ni unconditional
subgraphs gj

i , j = 1, 2, ..., ni. In Figure 6.5, for example, we have
three unconditional subgraphs g1

1, g2
1, g3

1 derived from G1 and
two, g1

2, g2
2 derived from G2.

At the same time, each CPG Gi can be transformed into a sim-
ple process graph τi, by transforming conditional edges into ordi-
nary ones and dropping the conditions. When deriving the worst
case delay on Gi we apply the analysis from Section 6.2.4 (algo-

Figure 6.6: Schedulability Analysis Ignoring Conditions

SA/IC(application Γ)
1 -- verifies the schedulability of a system consisting of a set of
2 -- conditional process graphs
3 transform each Gi ∈ Γ into the corresponding τi ∈ S
4 SchedulabilityTest(S)
5 if S is schedulable then application Γ is schedulable
end SA/IC

CHAPTER 6

158

rithm DelayEstimate in Figure 6.3) separately to each uncondi-
tional subgraph gj

i in combination with the graphs (τ1, τ2, ... τi–1,
τi+1, τn). This means that we consider each alternative path from
Gi in the context of the application, instead of the whole sub-
graph τi as in the previous approach. This is described by the
algorithm DE/CPG in Figure 6.7a. The schedulability analysis is
then based on the delay estimation for each CPG as shown in the
algorithm SA/BF in Figure 6.7b.

Such an approach, we call it BF, while producing tight bounds
on the delays, can be expensive from the runtime point of view,
because it is applied for each unconditional subgraph. In gen-

Figure 6.7: Brute Force Schedulability Analysis

DE/CPG(CPG G, application S)
1 -- derives the worst case delay of a CPG G considering
2 -- the influence from all other process graphs in the application S
3 extract all unconditional subgraphs gj from G
4 for each gj ∈ G do
5 DelayEstimate(gj, S)
6 end for
7 return the largest of the delays, which is

the worst case delay δΓ of CPG G
end DE/CPG

a) DE/CPG: Delay estimation for conditional process graphs

SA/BF(application Γ)
1 -- verifies the schedulability of a system consisting of a set Γ of
2 -- conditional process graphs
3 transform each Gi ∈Γ into the corresponding τi ∈S
4 for each Gi ∈ Γ do
5 DE/CPG(Gi, {τ1, τ2, ...τi–1, τi+1, τn})
6 end for
7 if all CPGs meet their deadline then the application Γ is schedulable
end SA/BF

b) SA/BF: Schedulability analysis: the brute force approach

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

159

eral, the number of unconditional subgraphs can grow exponen-
tially. However, for many of the practical systems this is not the
case, and the brute force method can be used. Alternatively, less
expensive methods, like those presented next, can be applied.

6.3.3 CONDITION SEPARATION (CS)

In some situations, the explosion of unconditional subgraphs
makes the brute force method inapplicable. Hence, we need to
find an analysis that is situated somewhere between the two
alternatives IC and BF, which means its should not be too pessi-
mistic and should run in acceptable time.

A first idea is to go back to the DelayEstimate algorithm in
Figure 6.3, and use the knowledge about conditions in order to
update the maxsep table. If two processes Pi and Pj never overlap
their execution because they execute under alternative values of
conditions, then we can update maxsep[Pi, Pj] to 0, and thus,
improve the quality of the delay estimation. Two processes Pi

and Pj never overlap their execution if there exists at least one
condition C, so that C ⊂ XPi (XPi is the guard of process Pi) and
C ⊂ XPj (lines 19–23 in Figure 6.8).

In this approach, called CS, we practically use the same algo-
rithm as for ordinary process graphs and try to exploit the infor-
mation captured by conditional dependencies in order to exclude
certain influences during the analysis. In Figure 6.8 we show
the algorithm SA/CS which performs the schedulability analysis
based on this heuristic.

6.3.4 RELAXED TIGHTNESS ANALYSIS (RT)

The two alternatives of the RT approach discussed here are sim-
ilar to the brute force algorithm in Figure 6.7. However, they try
to improve on the execution time of the analyses by reducing the
complexity of the DelayEstimate algorithm (Figure 6.3) which is
called from the DE/CPG function, in line 5 (Figure 6.7a). This will
reduce the execution time of the analysis, not by reducing the

CHAPTER 6

160

number of subgraphs which have to be visited (like in the CS ap-
proach), but by reducing the time needed to analyze each sub-
graph.

As our experimental results in Section 6.8 show, this approach
can be very effective in practice. Of course, by the simplification

Figure 6.8: Schedulability Analysis using
Condition Separation

SA/CS(application Γ)
1 -- verifies the schedulability of a system consisting of a set Γ of
2 -- conditional process graphs
3 transform each Gi ∈ Γ into the corresponding τi ∈ S
4 and keep guard XPi

 for each Pi
5 for each τi ∈ S do
6 -- derives the worst case delay of a process graph τi
7 -- considering the influence from all other process graphs
8 -- in the system S
9 for each pair (Pi, Pj) in τi do
10 maxsep[Pi, Pj] = ∞
11 end for
12

13 repeat
14 LatestTimes(τi)
15 EarliestTimes(τi)
16 for each Pi ∈ τi do
17 MaxSeparations(Pi)
18 end for
19 for each pair (Pi, Pj) in τi do
20 if ∃C, C ⊂ XPi

 ∧ C ⊂ XPj then
21 maxsep[Pi, Pj] = 0
22 end if
23 end for
24 until maxsep is not changed or limit reached
25 δGi

 is the worst case delay for Gi
26 end for
27 if all CPGs meet their deadline then the application Γ is schedulable
end SA/CS

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

161

applied to DelayEstimate the quality of the analysis is reduced in
comparison to the brute force method.

We have considered two alternatives of which the first one is
more drastic while the second one is trying a more refined trade-
off between execution time and quality of the analyses.

With both these approaches, the idea is not to run the itera-
tive tightening loop in DelayEstimate that repeats until no
changes are made to maxsep or until the limit is reached (lines 7–
13 in Figure 6.3). While this tightening loop iteratively reduces
the pessimism when calculating the worst case response times,
the actual calculation of the worst case response times is done in
LatestTimes, and the rest of the algorithm in Figure 6.3 just tries
to improve on these values. For the first approach, called RT1 the
function DelayEstimate has been transformed like in Figure 6.9a.

Figure 6.9: Delay Estimation for the RT Approaches

DelayEstimateRT1(process graph τ, application S)
1 LatestTimes(τ)
end DelayEstimateRT1

a) Delay estimation for RT1

DelayEstimateRT2(process graph τ, application S)
1 for each pair (Pi, Pj) in τi do
2 maxsep[Pi, Pj] = ∞
3 end for
4 LatestTimes(τ)
5 EarliestTimes(τ)
6 for each Pi ∈ τ do
7 MaxSeparations(Pi)
8 end for
9 LatestTimes(τ)
end DelayEstimateRT2

b) Delay estimation for RT2

CHAPTER 6

162

However, it might be worth using at least the MaxSeparations in
order to obtain tighter values for the worst case response times.
For the alternative RT2 in Figure 6.9b, DelayEstimateRT2 first
calls LatestTimes and EarliestTimes, then MaxSeparations in order to
build the maxsep table, and again LatestTimes to tighten the worst
case response times (lines 4–9 in Figure 6.9b).

6.4 Schedulability Analysis for Distributed
Systems

The previous sections have shown how we can reduce the pessi-
mism of the analysis by using information related to the data
and control dependencies. In this section, we present an exten-
sion of the response time analysis to handle applications distrib-
uted on multi-processor architectures.

Tindell et al. [Tin94a] integrate processor and communication
scheduling and provide a “holistic” schedulability analysis in the
context of distributed real-time systems. The validity of the
analysis in has been later confirmed in [Pal97].

In the case of a distributed system the response time of a pro-
cess also depends on the communication delay due to messages.
In [Tin94a] the analysis for messages is done is a similar way as
for processes: a message is seen as an un-preemptable process
that is “running” on a bus. Thus, the same analysis can be
applied for messages on a bus, rewriting Equation 6.1 to:

, (6.4)

where Jm is the jitter of message m which in the worst case is
equal to the response time rS(m) of the sender process PS(m), wm is
the worst-case queuing delay experienced by m at the communi-
cation controller, and Cm is the worst-case time it takes for mes-
sage m to reach the destination controller.

rm Jm wm Cm+ +=

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

163

The response time analyses for processes and messages are
combined by realizing that the jitter of a destination process
depends on the communication delay between sending and
receiving a message. Thus, for a process PD(m) that receives a
message m from a sender process PS(m), the release jitter is:

. (6.5)

For the communication infrastructure of our heterogeneous
architectures, we use in this thesis the controller area network
and the time-triggered protocols. In order to analyze systems
implemented with these two protocols, we have to provide anal-
yses that bound the worst-case queuing delay wm and worst-case
transmission delay Cm for a message m. Tindell et al. [Tin95]
provide an analysis for the CAN protocol, while in [Tin94a] an
analysis for a simple TDMA protocol, sharing similarities with
TTP, is presented. We present briefly these analyses, and later
we will show how they can be extended to suit our particular set-
tings.

6.4.1 SCHEDULABILITY ANALYSIS FOR THE CAN PROTOCOL

Tindell et al. [Tin95] provide worst-case bounds for wm and Cm in
the context of the CAN protocol. CAN is a priority bus, where the
message having the highest priority on the network gets to be
transmitted (see Section 3.2.2).

In Figure 3.8 on page 63 node N2 is part of a CAN network, and
has a CAN controller. Messages waiting to become the highest
priority on the network wait for their transmission in an outgo-
ing queue denoted in the figure with OutN2

. Thus, the worst-case
queuing delay for a message m is:

. (6.6)

JD m() rm=

wm Bm
wm Jj Omj–+

Tj
--

0
Cj

mj∀ hp m()∈
∑+=

CHAPTER 6

164

The intuition is that m has to wait, in the worst case, first for
the largest lower priority message that is just being transmitted
(Bm) as well as for the higher priority mj ∈ hp(m) messages that
have to be transmitted ahead of m (the second term). In the
worst case, the time it takes for the largest lower priority mes-
sage mk ∈ lp(m) to be transmitted to its destination is:

. (6.7)

Once m is sent, the time Cm it takes to transmit it to the des-
tination controller depends on the frame configuration, message
size sm, and the time τbit it takes to transmit a bit [Tin95]:

(6.8)

6.4.2 SCHEDULABILITY ANALYSIS FOR A TDMA BUS

In this part of the thesis we consider that, although the mes-
sages are produced based on events, they are transmitted using
the time-triggered protocol. TTP has a time-division multiple
access scheme to the bus, meaning that a message produced on
node Ni can be transmitted only during a predetermined time
interval, the slot Si corresponding to node Ni.

Tindell et al. [Tin94a] have developed an analysis for a simple
TDMA bus that share similarities with the TTP. In their setting,
messages are split into packets before being sent.

The transmission delay Cm of a message m sent as pm packets
over a slot S, is equal to:

, (6.9)

where Sp is the size of slot S in number of packets, and SS is the
size of the slot in number of bits.

Bm
max

mk∀ lp m()∈
Ck()=

Cm
34 8sm+

5
------------------------ 47 8sm+ + 

  τbit=

Cm
pm
Sp
-------- SSτbit=

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

165

The details of message transmission in such a setting are pre-
sented in Section 3.4. When a message is produced by a sender
process, all its packets are placed in the Out queue (Figure 3.6
on page 58). Packets are ordered according to their priority. At
its activation, the message transfer process takes a certain num-
ber of packets from the head of the Out queue and constructs a
frame. The number of packets accepted is decided so that their
total size does not exceed the length of the data field of the
frame. This length is limited by the size of the slot corresponding
to the respective processor. Since the messages are produced
dynamically, they have to be identified in a certain way so that
they are recognized when the frame arrives at the delivery pro-
cess. Thus, each message has several identifier bits appended at
the beginning of the message.

Since the packets are dynamically packed into frames in the
order they are sorted in the queue, the worst-case queuing delay
to the communication channel for a packet p depends on the
number of packets queued ahead of it.

The analysis in [Tin94a] bounds the number of queued ahead
packets of messages of higher priority than a message m by:

, (6.10)

where pm is the number of packets of message m, Sp is the size of
the slot (in number of packets) corresponding to m, and

, (6.11)

where pj is the number of packets of a message mj.
The analysis assumes that the period Tm of any message m is

longer or equal to the length of a TDMA round, Tm ≥ TTDMA (see
Figure 3.2 on page 51 and Figure 6.10 on page 168).

wm
pm Im+

Sp
---------------------- TTDMA=

Im
rs mj()

Tj

mj∀ hp m()∈
∑ pj=

CHAPTER 6

166

6.5 Schedulability Analysis for the Time
Triggered Protocol

Although there are many similarities with the general TDMA

protocol, the analysis in the case of TTP is different in several
aspects from the one outlined in the previous sections, and also
differs to a large degree depending on the policy chosen for mes-
sage scheduling.

The four approaches we propose for scheduling of messages
using TTP differ in the way the messages are allocated to the com-
munication channel (either statically or dynamically), and
whether they are split into packets for transmission or not. The
next sections present the analysis for each approach as well as the
degrees of liberty a designer has, in each of the cases, for opti-
mizing the MEDL (the static schedule table for messages, see
Section 3.2.1). First, we discuss each approach in the case when
the response time rm of a message m is smaller or equal with its
period Tm. Then, in Section 6.5.5, we present the generalization
for the case rm > Tm.

Before going into details for each of the message scheduling
approaches proposed by us we have to mention how we account
on each processors, for the overheads due to transmission.

The overhead produced by the communication activities must
be accounted for not only as part of the response time for a mes-
sage, but also through its influence on the response time of pro-
cesses running on the same processor. We consider this influence
during the schedulability analysis of processes on each proces-
sor. We assume that the worst case computation time of the
transfer process (T in Figure 3.6 on page 58) is known, and that
it is different for each of the four message scheduling
approaches. Based on the respective MHTT, the transfer process
is activated for each frame sent. Its worst-case period is derived
from the minimum time between successive frames.

The response time of the delivery process (D in Figure 3.6), is
considered as part of the communication delay. The influence

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

167

due to the delivery process must be also included when analyz-
ing the response time of the processes running on the respective
processor. We consider the delivery process during the schedula-
bility analysis in the same way as the message transfer process.

6.5.1 STATIC SINGLE MESSAGE ALLOCATION (SM)

The first approach to scheduling of messages using TTP is to stat-
ically (off-line) schedule each of the messages into a slot of the
TDMA cycle, corresponding to the node sending the message. This
means that for each message we decide off-line to allocate space
in one or more frames, space that can only be used by that par-
ticular message. In Figure 6.10 the frames are denoted by rect-
angles. In this particular example, it has been decided to
allocate space for message m in slot S1 of the first and third
rounds.

Since the messages are dynamically produced by the pro-
cesses, the exact moment a certain message is generated cannot
be predicted. Hence, it can happen that certain frames will be
left empty during execution. For example, if there is no message
m in the Out queue (see Figure 3.6) when the slot S1 of the first
round in Figure 6.10 starts, that frame will carry no informa-
tion. A message m produced immediately after slot S1 starts to
be transmitted, could then be carried by the frame scheduled in
the slot S1 of the third round.

In the SM approach, we consider that the slots can hold each at
most one single message. This approach is well suited for appli-
cation areas, like safety-critical automotive electronics, where
the messages are typically short and the ability to easily diag-
nose the system (fewer messages in a frame are easier to
observe) is critical. In the automotive electronics area messages
are typically a couple of bytes, encoding signals like vehicle
speed. However, for applications using larger messages, the SM

approach leads to overheads due to the inefficient utilization of
slot space when transmitting smaller size messages.

CHAPTER 6

168

As each slot carries only one fixed, predetermined message,
there is no interference among messages. If a message m misses
its allocated frame it has to wait for the following slot assigned
to m. The worst-case queuing delay wm for a message m in this
approach is the maximum time between consecutive slots of the
same node carrying the message m. We denote this time by θm,
illustrated in Figure 6.10, where we have a system cycle of
length Tcycle, consisting of three TDMA rounds.

In this case, the worst-case response time rm of a message m
becomes θm + Cm. Therefore, the main aspect influencing sched-
ulability of the messages is the way they are statically allocated
to slots, which determines the values of θm. θm, as well as Cm,
depend on the slot sizes which, in the case of SM, are determined
by the size of the largest message sent from the corresponding
node plus the bits for control and CRC, as imposed by the proto-
col.

As mentioned before, the analysis in [Tin94a], done for a sim-
ple TDMA protocol, assumes that Tm ≥ TTDMA. In the case of static
message allocation with TTP (the SM and MM approaches), this
translates to the condition Tm ≥ θm.

During the synthesis of the MEDL, the designer has to allocate
the messages to slots in such a way that the process set is sched-
ulable. Since the schedulability of the process set can be influ-

S1 S2

Figure 6.10: Worst-Case Arrival Time for SM

S1 S2 S1 S2

m m

θ Cm

m’

m

TTDMA

Tcycle

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

169

enced by the synthesis of the MEDL only through the θm

parameters, these are the parameters which have to be opti-
mized.

Example 6.4: Let us consider the simple example depicted
in Figure 6.11, where we have three processes, P1, P2, and P3
running each on a different processor. When process P1 fin-
ishes executing it sends message m1 to process P3 and mes-
sage m2 to process P2. In the TDMA configurations presented
in Figure 6.11, only the slot corresponding to the CPU run-
ning P1 is important for our discussion and the other slots
are represented with light gray. With the configuration in
Figure 6.11a, where the message m1 is allocated to the
rounds one and four and the message m2 is allocated to
rounds two and three, process P2 misses its deadline because
of the release jitter due to the message m2 in Round 2. How-
ever, if we have the TDMA configuration depicted in
Figure 6.11b, where m1 is allocated to the rounds two and
four and m2 is allocated to the rounds one and three, all the
processes meet their deadlines.

6.5.2 STATIC MULTIPLE MESSAGE ALLOCATION (MM)

This second approach is an extension of the first one. In this
approach we allow more than one message to be statically
assigned to a slot and all the messages transmitted in the same
slot are packed together in a frame. As with the SM approach,
there is no interference among messages, so the worst case
access delay for a message m is the maximum time between con-
secutive slots of the same node carrying the message m, θm. It is
also assumed that Tm ≥ θm.

However, this approach offers more freedom during the syn-
thesis of the MEDL. We have now to decide also on how many and
which messages should be packed in a slot. This allows more
flexibility in optimizing the θm parameter.

CHAPTER 6

170

m
1

m
2

m
2

m
1

m
2

m
1

m
2

m
1

m
2

m
1

m
2

m
1

R
el

ea
se

 J
it

te
r

R
u

n
n

in
g

pr
oc

es
s

M
es

sa
ge

P
ro

ce
ss

 a
ct

iv
at

io
n

D
ea

dl
in

e

P
1

P
2

P
3

a)
 P

2
m

is
se

s
it

s
de

ad
li

n
e

b
)

A
ll

 p
ro

ce
ss

es
 m

ee
t

th
ei

r
de

ad
li

n
es

;

c)
 A

ll
 p

ro
ce

ss
es

 m
ee

t
th

ei
r

de
ad

li
n

es
;

T
T

P
 b

u
sN
1:

N
2:

N
3:

P
1

P
2

P
3

T
T

P
 b

u
sN
1:

N
2:

N
3:

P
1

P
2

P
3

T
T

P
 b

u
sN
1:

N
2:

N
3:

be
ca

u
se

 o
f

m
es

sa
ge

 m
2

sc
h

ed
u

le
d

in
 t

h
e

se
co

n
d

an
d

th
ir

d
ro

u
n

ds

m
2

is
 s

ch
ed

ul
ed

 in
 t

he
 fi

rs
t

an
d

th
ir

d
ro

un
ds

 a
nd

 it
 is

 r
ec

ei
ve

d
by

 P
2

on
 t

im
e

th
e

re
le

as
e

ji
tt

er
 is

 r
ed

u
ce

d
by

 s
ch

ed
u

li
n

g
m

1
an

d
m

2
in

 t
h

e
sa

m
e

ro
u

n
d

P
1

P
2

P
3

m
2

m
1

d
)

A
pp

li
ca

ti
on

T
T

P
T

T
P

N
1

N
2

e)
 A

rc
h

it
ec

tu
re

T
T

P

N
3

F
ig

u
re

 6
.1

1:
 O

pt
im

iz
in

g
th

e
M

E
D

L
 f

or
 S

M
 a

n
d

M
M

P
1

P
2

P
3

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

171

Example 6.5: To illustrate this, let us consider the same
example depicted in Figure 6.11. With the MM approach, the
TDMA configuration can be arranged as depicted in
Figure 6.11c, where the messages m1 and m2 are put
together in the same slot in the first and second rounds.
Thus, the deadline is met and the release jitter is further
reduced compared to the case presented in Figure 6.11b
where process P3 was experiencing a large release jitter.

6.5.3 DYNAMIC MESSAGE ALLOCATION (DM)

The previous two approaches have statically allocated one or
more messages to their corresponding slots. This third approach
considers that the messages are dynamically allocated to
frames, as they are produced.

Thus, as soon as a message is produced, it is placed in the Out
queue (see Figure 3.6 on page 58), ordered according to the mes-
sage priorities. When the transfer process is activated on node
Ni, it removes from the head of the queue a number of messages,
such that the total size does not exceed the length of the data
field of the frame allocated to slot Si. Since the messages are
sent dynamically, we have to identify them in a certain way so
that they are recognized when the frame arrives at the delivery
process. We consider that each message has several identifier
bits appended at the beginning of the message.

We dynamically pack messages into frames in the order they
are sorted in the queue, thus, the worst-case queuing delay to
the communication channel for a message m depends on the
number of messages queued ahead of it.

The analysis in [Tin94a] for a simple TDMA bus, presented in
Section 6.4.2, bounds the number of queued-ahead packets of
messages of higher priority than message m, as in their case it is
considered that a message can be split into packets before it is
transmitted on the communication channel (Equation 6.10). We

CHAPTER 6

172

use the same analysis but we have to apply it for the number of
messages instead of packets. We have to consider that messages
can be of different sizes as opposed to packets which always are
of the same size.

Therefore, the total size of higher priority messages queued
ahead of a message m, in the worst case, is:

, (6.12)

where Sj is the size of the message mj, rs(j) is the response time of
the process sending message mj, and Tj is the period of the mes-
sage mj.

Further, we calculate the worst-case time that a message m
spends in the Out queue. The number of TDMA rounds needed, in
the worst case, for a message m placed in the queue to be
removed from the queue for transmission is

, (6.13)

where Sm is the size of the message m and Ss is the size of the
slot transmitting m (we assume, in the case of DM, that for any
message x, Sx ≤ Ss). This means that the worst case time a mes-
sage m spends in the Out queue is given by

, (6.14)

where TTDMA is the time taken for a TDMA round.
Since the size of the messages is fixed for a given application,

the parameter that will be optimized during the synthesis of the
MEDL is the slot size.

Im
rs mj()

Tj

mj∀ hp m()∈
∑ Sj=

Sm Im+

Ss

wm
Sm Im+

Ss
----------------------- TTDMA=

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

173

Example 6.6: To illustrate how the slot size influences
schedulability, let us consider the example in Figure 6.12
where we have the same setting as for the example in
Figure 6.11. The difference is that we consider message m1
having a higher priority than message m2 and we schedule
the messages dynamically as they are produced.

With the configuration in Figure 6.12a message m1 will be
dynamically scheduled first in the slot of the first round,
while message m2 will wait in the Out queue until the next
round comes, thus causing process P2 to miss its deadline.
However, if we enlarge the slot so that it can accommodate
both messages, message m2 does not have to wait in the
queue and it is transmitted in the same slot as m1. Therefore,
P2 will meet its deadline as presented in Figure 6.12b.

However, in general, increasing the length of slots does not
necessarily improve schedulability, as it delays the communi-
cation of messages generated by other nodes.

6.5.4 DYNAMIC PACKET ALLOCATION (DP)

This approach is an extension of the previous one, as we allow
the messages to be split into packets before they are transmitted
on the communication channel. We consider that each slot has a
size that accommodates a frame with the data field being a mul-
tiple of the packet size. The analysis for this case is similar to
the one outlined in Section 6.4.2 for the simple TDMA bus.

This approach is well suited for the application areas that typ-
ically have large message sizes. By splitting messages into pack-
ets, we can obtain a higher utilization of the bus and reduce the
release jitter. However, since each packet has to be identified as
belonging to a message, and messages have to be split at the
sender and reconstructed at the destination, the overhead
becomes higher than in the previous approaches.

CHAPTER 6

174

In the previous approach (DM) the optimization parameter for
the synthesis of the MEDL was the size of the slots. With this
approach we can also decide on the packet size, which becomes
another optimization parameter.

Example 6.7: Consider the example in Figure 6.12c where
messages m1 and m2 have a size of 6 bytes each. The packet
size is considered to be 4 bytes and the slot corresponding to
the messages has a size of 12 bytes (three packets) in the
TDMA configuration. Since message m1 has a higher priority
than m2, it will be dynamically scheduled first in the slot of
the first round and it will need two packets. In the third
packet the first 4 bytes of m2 are placed. Thus, the remaining
2 bytes of message m2 have to wait for the next round, caus-
ing process P2 to miss its deadline. However, if we change the
packet size to 3 bytes and keep the same size of 12 bytes for
the slot, we have four packets in the slot corresponding to the
CPU running P1 (Figure 6.12d). Message m1 will be dynami-
cally scheduled first and will need 2 packets in the slot of the
first round. Hence, m2 can be sent in the same round so that
P2 can meet its deadline.

In the above example, with one single sender processor and
the particular message and slot sizes as given, the problem
seems to be simple. This is, however, not the case in general. For
example, the packet size which fits a particular node can be
unsuitable in the context of the messages and slot size corre-
sponding to another node. At the same time, reducing the pack-
ets size increases the overheads due to the transfer and delivery
processes.

6.5.5 ARBITRARY ARRIVAL TIMES

The response time analyses presented in the previous sections
are valid only under the assumption that the deadline of a pro-
cess or message is smaller than or equal to its period. In this sec-

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

175

Figure 6.12: Optimizing the MEDL for DM and DP

m1 m2 m1 m2

m1 m2/packet 2 m1 m2/packet 2m2/packet 1 m2/packet 1

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1

P2

P3

m1 m2 m1 m2

m1 m2 m1 m2

a) P2 misses its deadline; there is no space in the slot of the first round

b) All processes meet their deadlines; the slot has been enlarged

c) P2 misses its deadline; the slot is too small

d) All processes meet their deadlines; the slot has been enlarged

to schedule the lower priority message m2

 to hold both messages

to hold both packets of message m2

to hold 4 packets instead of 3

Release Jitter Running process Message
Process activation Deadline

CHAPTER 6

176

tion, we show how the analysis for the time-triggered protocol
presented in Section 6.5 can be extended to handle “arbitrary
deadlines,” i.e., deadlines which are larger than the period.

Thus, we use the arbitrary deadline analysis from [Leh90].
Lehoczky [Leh90] uses the notion of “level-i busy period” which
is the maximum time a processor executes processes of priority
greater than or equal to the priority of process Pi. In order to find
the worst-case response time, a number of busy periods have to
be examined.

The same analysis can be applied for messages, transmitted
on a TTP bus, as outlined in Section 6.5. The worst case time a
message m takes to arrive at the communication controller of
the destination node is determined in [Tin94a] using the arbi-
trary deadline analysis [Leh90], and is given by:

, (6.15)

where is the worst-case queuing delay,
Cm(q) is the transmission delay, and Tm is the period of the mes-
sage. In the previous equation, q is the number of busy periods
being examined, and Wm(q) is the width of the level-m busy
period starting at time qTm.

The approach to message scheduling in [Tin94a] is similar to
the DP approach and considers that the messages are dynami-
cally allocated to frames as they are produced, and that they can
be split into packets before they are transmitted. Hence, the
worst-case queuing delay is determined as being:

, (6.16)

with the interference calculated as

, (6.17)

rm
max

q=0,1,2...
Wm q() qTm– Cm q()+()=

wm W=
m

q() qTm–

wm q()
q 1+()pm Im W q()()+

Sp
-- TTDMA qTm–=

Im W()
W rs mj()+

Tj

mj∀ hp m()∈
∑ pj=

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

177

where the variables have the same meaning as in the analysis
presented in the previous section for the DP approach, and W is a
function of m and q and denotes the width of the busy period.

Further, in order to determine the propagation delay Cm(q) of
a message m, we have to observe that in the case of DP the mes-
sages can be split into packets, and thus the transmission of a
message can span over several rounds. The analysis in [Tin94a]
determines the propagation delay based on the number of pack-
ets that need to be taken from the queue over the time Wm(q) in
order to guarantee the transmission of the last packet of m.
Thus, the propagation delay depends on the number of busy
periods q being examined.

However, in the other three approaches, namely DM, MM and
SM, messages cannot be split into packets and the transmission
of a message is done in one single round. Therefore, the propaga-
tion delay Cm is equal to the slot size in which message m is
being transmitted, and thus is not influenced by the number of
busy periods being examined.

The worst-case queuing delay in the DM, MM and SM

approaches is obtained through a particularization of the analy-
sis for DP presented above. Thus, in the case of DM, in which mes-
sages are allocated dynamically but cannot be split into packets,
we have:

, (6.18)

with the interference term being

, (6.19)

where the number of packets pm and the size of the slot (mea-
sured in packets) Sp are replaced with the message size Sm and
slot size Ss, respectively.

wm q()
q 1+()Sm Im W q()()+

Ss
-- TTDMA qTm–=

Im W()
W rs mj()+

Tj

mj∀ hp m()∈
∑ Sj=

CHAPTER 6

178

The analysis becomes even simpler in the case of the two
static approaches. Since the allocation of messages to slots is
statically performed in the SM and MM approaches there is no
interference from other (higher priority) messages but only from
later transmissions of the same message. Thus, the interference
term Im due to higher priority messages is null, and the worst-
case queuing delay for both SM and MM is:

. (6.20)

6.6 Schedulability Analysis for Event-Driven
Systems

The previous sections have built, step by step, a response time
analysis for event driven systems that is able to handle:

 • data dependencies in applications,
 • distributed architectures,
 • the details of several communication protocols, and
 • control dependencies.

Therefore, at this point we have two analyses (see the boxes
with a thick border in Figure 6.2):

1. A response time analysis for applications with data and con-
trol dependencies distributed over a multi-processor archi-
tecture that uses TTP as the communication protocol. In
Section 6.7 we will show how this analysis can be used to
drive a bus access optimization process for the time-trig-
gered protocol.

2. A similar response time analysis, but for CAN. This analysis
will be used in Chapter 8 for the event-triggered cluster of a
multi-cluster system.

wm q() q 1+()θm qTm–=

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

179

6.6.1 DEGREE OF SCHEDULABILITY

To determine if an application is schedulable, it is enough to
compare the response times with the deadlines. However, in
order to drive our optimization heuristics aiming at obtaining a
schedulable system at a low cost, we need a metric that is able to
indicate which of the design alternatives is “more schedulable”
than the others.

Thus, in order to guide the optimization process, we have used
as a cost function the “degree of schedulability.” Our cost func-
tion is similar to that in [Tin92] in the case an application is not
schedulable (c1). However, in order to distinguish between sev-
eral schedulable applications, we have introduced the second
expression c2, which measures, for a feasible design alternative,
the total difference between the response times and the dead-
lines. We use the following function in order to express the
degree of schedulability:

where n is the number of processes in the application, Ri is the
worst-case response time of a process Pi, and Di is the deadline
of a process Pi. If the application is not schedulable, there exists
at least one Ri greater than the deadline Di, therefore the term
c1 of the function will be positive. In this case the cost function is
equal to c1.

However, if the application is schedulable, then each Ri is
smaller than the corresponding deadline Di. In this case c1 = 0
and we use c2 as the cost function, as it is able to differentiate
between two alternatives, both leading to a schedulable applica-
tion. For a given design implementation leading to a schedulable
application, a smaller c2 means that we have improved the

degree of schedulability(design)=

c2 = , if c1 = 0Ri Di–()
i 1=

n

∑

c1 = , if c1 > 0max 0 R, i Di–()
i 1=

n

∑

CHAPTER 6

180

response times of the processes, so the application can be poten-
tially implemented on a cheaper hardware architecture (with
slower processors and/or bus, but without increasing the num-
ber of processors or buses).

6.7 Bus Access Optimization
Once a schedulability analysis for event-driven distributed real-
time systems is in place, our problem is to analyze the schedula-
bility of a given process set and to synthesize the MEDL of the TTP

controllers (and consequently the MHTTs) so that the application
is schedulable on an as cheap as possible architecture. The opti-
mization is performed on the parameters which have been iden-
tified for each of the four approaches to message scheduling
discussed before (see Section 6.5). In order to guide the optimi-
zation process, we have used as a cost function the degree of
schedulability calculated for a given MEDL implementation.

For a given application, we are interested to synthesize a
MEDL such that the degree of schedulability cost function is min-
imized. We are also interested to evaluate in different contexts
the four approaches to message scheduling, thus offering the
designer a decision support for choosing the approach that best
fits his application.

The MEDL synthesis problem belongs to the class of exponen-
tial complexity problems, therefore we are interested to develop
heuristics that are able to find accurate results in a reasonable
time. We have developed optimization algorithms corresponding
to each of the four approaches to message scheduling. A first set
of algorithms presented in Section 6.7.1 is based on simple and
fast greedy heuristics. In Section 6.7.2 we introduce a second
class of heuristics which aims at finding near-optimal solutions
using the simulated annealing (SA) algorithm.

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

181

6.7.1 GREEDY HEURISTICS

We have developed greedy heuristics for each of the four
approaches to message scheduling. The main idea of the heuris-
tics is to minimize the cost function by incrementally trying to
reduce the communication delay of messages and, by this, the
release jitter of the processes.

The only way to reduce the release jitter in the SM and MM

approaches is through the optimization of the θm parameters.
This is achieved by a proper placement of messages into slots
(see Figure 6.11).

The OptimizeSM algorithm presented in Figure 6.13 starts by
deciding on a size (sizeSi

) for each of the slots. The slot sizes are
set to the minimum size that can accommodate the largest mes-
sage sent by the corresponding node (lines 1–4 in Figure 6.13).
In this approach a slot can carry at most one message, thus slot
sizes larger than this size would lead to larger response times.

Then, the algorithm has to decide on the number of rounds,
thus determining the size of the MEDL. Since the size of the MEDL

is physically limited, there is a limit to the number of rounds
(e.g., 2, 4, 8, 16 depending on the particular TTP controller
implementation). However, there is a minimum number of
rounds MinRounds, which are necessary for a certain application,
and depends on the number of messages transmitted (lines 5–9).
For example, if the processes mapped on node N1 send in total
seven messages then we have to decide on at least seven rounds
in order to accommodate all of them (in the SM approach there is
at most one message per slot). Several numbers of rounds
RoundsNo are tried out by the algorithm starting from MinRounds

up to MaxRounds (lines 15–31).
For a given number of rounds (that determine the size of the

MEDL), the initially empty MEDL has to be populated with mes-
sages in such a way that the cost function is minimized. In order
to apply the schedulability analysis, which is the basis for the
cost function, a complete MEDL has to be provided. A complete

CHAPTER 6

182

MEDL contains at least one instance of every message that has to
be transmitted between the processes on different processors. A
minimal complete MEDL is constructed from an empty MEDL by
placing one instance of every message mi into its corresponding
empty slot of a round (lines 10–14).

Figure 6.13: Greedy Heuristic for SM

OptimizeSM
1 -- set the slot sizes
2 for each node Ni do
3 sizeSi

 = max(size of messages mj sent by node Ni)
4 end for
5 -- find the minimum number of rounds that can hold all the messages
6 for each node Ni do
7 nmi = number of messages sent from Ni
8 end for
9 MinRounds = max (nmi)
10 -- create a minimal complete MEDL
11 for each message mi do
12 find round in [1..MinRounds] that has an empty slot for mi
13 place mi into its slot in round
14 end for
15 for each RoundsNo in [MinRounds...MaxRounds] do
16 -- insert messages in such a way that the cost is minimized
17 repeat
18 for each process Pi that receives a message mi do
19 if Di – Ri is the smallest so far then m = mPi end if
20 end for
21 for each round in [1..RoundsNo] do
22 place m into its corresponding slot in round
23 calculate the CostFunction
24 if the CostFunction is smallest so far then
25 BestRound = round
26 end if
27 remove m from its slot in round
28 end for
29 place m into its slot in BestRound if one was identified
30 until the CostFunction is not improved
31 end for
end OptimizeSM

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

183

Example 6.8: In Figure 6.11a, for example, we have a MEDL
composed of four rounds. We get a minimal complete MEDL,
for example, by assigning m2 and m1 to the slots in rounds
three and four, and letting the slots in rounds one and two
empty.

However, such a MEDL might not lead to a schedulable system.
The degree of schedulability can be improved by inserting
instances of messages into the available places in the MEDL, thus
minimizing the θm parameters.

Example 6.9: For example, in Figure 6.11a, by inserting
another instance of the message m1 in the first round and m2
in the second round leads to P2 missing its deadline, while in
Figure 6.11b inserting m1 into the second round and m2 into
the first round leads to a schedulable system.

Our algorithm repeatedly adds a new instance of a message to
the current MEDL in the hope that the cost function will be
improved (lines 16–30). In order to decide an instance of which
message should be added to the current MEDL, a simple heuristic
is used. We identify the process Pi which has the most “critical”
situation, meaning that the difference between its deadline and
response time, Di – Ri, is minimal compared with all other pro-
cesses. The message to be added to the MEDL is the message
m = mPi

 received by the process Pi (lines 18–20). Message m will
be placed into that round (BestRound) which corresponds to the
smallest value of the cost function (lines 21–28). The algorithm
stops if the cost function cannot be further improved by adding
more messages to the MEDL.

The OptimizeMM algorithm is similar to OptimizeSM. The main
difference is that in the MM approach several messages can be
placed into a slot (which also decides its size), while in the SM

approach there can be at most one message per slot. Also, in the
case of MM, we have to take additional care that the slots do not
exceed the maximum allowed size for a slot.

CHAPTER 6

184

The situation is simpler for the dynamic approaches, namely
DM and DP, since we only have to decide on the slot sizes and, in
the case of DP, on the packet size. For these two approaches, the
placement of messages is dynamic and has no influence on the
cost function. The OptimizeDM algorithm in see Figure 6.14 starts
with the first slot Si = S1 of the TDMA round and tries to find that
size (BestSizeSi

) which corresponds to the smallest CostFunction

(lines 4–14 in Figure 6.14). This slot size has to be large enough
(Si ≥ MinSizeSi

) to hold the largest message to be transmitted in
this slot, and within bounds determined by the particular TTP

controller implementation (e.g., from 2 bits up to MaxSize = 32
bytes). Once the size of the first slot has been determined, the
algorithm continues in the same manner with the next slots
(lines 7–12).

The OptimizeDP algorithm has also to determine the proper
packet size. This is done by trying all the possible packet sizes
given the particular TTP controller. For example, it can start
from 2 bits and increment with the “smallest data unit” (typi-

Figure 6.14: Greedy Heuristic for DM

OptimizeDM
1 for each node Ni do
2 MinSizeSi

 = max(size of messages mj sent by node Ni)
3 end for
4 -- identifies the size that minimizes the cost function
5 for each slot Si do
6 BestSizeSi

 = MinSizeSi
7 for each SlotSize in [MinSizeSi

...MaxSize] do
8 calculate the CostFunction
9 if the CostFunction is best so far then
10 BestSizeSi

 = SlotSizeSi
11 end if
12 end for
13 sizeSi

 = BestSizeSi
14 end for
end OptimizeDM

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

185

cally two bits) up to 32 bytes. In the case of the OptimizeDP algo-
rithm the slot size has to be determined as a multiple of the
packet size and within certain bounds depending on the TTP con-
troller.

6.7.2 SIMULATED ANNEALING STRATEGY

We have also developed an optimization procedure based on a
simulated annealing (SA) strategy, described in Appendix A. The
main characteristic of such a strategy is that it tries to find the
global optimum by randomly selecting a new solution from the
neighbors of the current solution.

The neighbors of the current solution are obtained depending
on the chosen message scheduling approach. For SM, the next
solution is obtained from the current one by inserting or remov-
ing a message in one of its corresponding slots. In the case of MM,
we have to take additional care that the slots do not exceed the
maximum allowed size (which depends on the controller imple-
mentation), as we can allocate several messages to a slot. For
these two static approaches we also decide on the number of
rounds in a cycle (e.g., 2, 4, 8, 16, limited by the size of the mem-
ory implementing the MEDL). In the case of DM, the neighboring
solution is obtained by increasing or decreasing the slot size
within the bounds allowed by the particular TTP controller
implementation, while in the DP approach we also increase or
decrease the packet size.

We have also tuned the parameters TI (initial temperature),
TL (temperature length), and ε (cooling ratio) that define the
cooling schedule (see Appendix A for the details on these param-
eters). For example, for the graphs with 320 nodes, TI is 300, TL

is 500 and ε is 0.95. The algorithm stops if for three consecutive
temperatures no new solution has been accepted.

CHAPTER 6

186

6.8 Experimental Results
In Section 6.8.1, the results for the schedulability analysis of
systems with data and control dependencies (Section 6.3) are
presented. Section 6.8.2 first presents the experimental results
for the schedulability analysis with the TTP (Section 6.4), com-
paring the four message scheduling approaches. Then, we
present the results obtained for the communication synthesis
problem outlined in Section 6.7. The approaches presented in
this chapter are further evaluated in Section 6.8.3 using the
vehicle cruise controller model from Section 2.3.3.

6.8.1 SCHEDULABILITY ANALYSIS FOR SYSTEMS WITH CONTROL
AND DATA DEPENDENCIES

In this section we present some experimental results regarding
the schedulability analysis for conditional process graphs which
has been discussed in Section 6.3. The two main aspects we were
interested in are the quality of the schedulability analysis and
the scalability of the algorithms for large examples. A better
quality of a schedulability analysis, in this case, means a lower
degree of pessimism. A set of massive experiments were per-
formed on conditional process graphs generated for experimen-
tal purpose.

We considered architectures consisting of 2, 4, 6, 8 and 10 pro-
cessors. Forty processes were assigned to each node, resulting in
applications of 80, 160, 240, 320 and 400 processes, having 2, 4,
6, 8 and 10 conditions, respectively. The number of uncondi-
tional subgraphs varied for each application dimension depend-
ing on the number of conditions and the randomly generated
structure of the CPGs. For example, for applications with 400
processes, the maximum number of unconditional subgraphs
was 64.

Thirty applications were generated for each dimension, thus a
total of 150 graphs were used for experimental evaluation.

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

187

Worst case execution times were assigned randomly using both
uniform and exponential distribution. The experiments were
also run on a SUN Ultra 10 workstation.

In order to compare the quality of the schedulability
approaches, we need a cost function that captures, for a certain
system, the difference in quality between the schedulability
approaches proposed (Section 6.3). Our cost function is the dif-
ference between the deadline and the worst-case delay of a CPG,
summed for all the CPGs in the system:

(6.21)

where n is the number of CPGs in the application, δGi
 is the

worst-case delay of the CPG Gi, and DGi
 is the deadline on Gi. A

higher value for this cost function, for a given system, means
that the corresponding approach produces better results (sched-
ulability analysis is less pessimistic).

For each of the 150 generated example systems and each of
the five schedulability analyses we have calculated the cost
function mentioned previously, based on results produced with
the algorithms described in Section 6.3. These values, for a
given system, differ from one analysis to another, with the BF

being the least pessimistic approach and therefore having the
largest value for the cost function.

We are interested to compare the approaches based on the val-
ues obtained for the cost function (Equation 6.21). Figure 6.15a
presents the average percentage deviations of the cost function
obtained in each of the approaches, compared to the value of the
cost function obtained with the BF approach. A smaller value for
the percentage deviation means a larger cost function, thus a
better result. The percentage deviation is calculated according
to the formula:

(6.22)

cost function DGi
δGi

–()
i 1=

n

∑=

deviation
costapproach costbest–

costbest
-- 100⋅=

CHAPTER 6

188

Figure 6.15: Comparison of the
Schedulability Approaches for CPGs

CS

IC

0

20

40

60

80

100

50 100 150 200 250 300 350 400

RT2
BF

RT1

Number of processes

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

0

50

100

150

200

250

300

350

400

450

50 100 150 200 250 300 350 400

CS

IC

RT2
BF

RT1

Number of processes

A
ve

ra
ge

 e
xe

cu
ti

on
 t

im
e

[s
]

a) Average percentage deviations

b) Average execution times

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

189

Figure 6.15b presents the average runtime of the algorithms,
in seconds.

The brute force approach, BF, performs best in terms of quality
and obtains the largest values for the cost function at the
expense of a large execution time. The execution time can be up
to 7 minutes for large graphs of 400 processes, 10 conditions, and
64 unconditional subgraphs. At the other end, the straightfor-
ward approach IC that ignores the conditions, performs worst
and becomes more and more pessimistic as the system size
increases. As can be seen from Figure 6.15, IC has even for
smaller systems of 160 processes (3 conditions, maximum 8
unconditional subgraphs) a 50% worse quality than the brute
force approach, with almost 80% loss in quality, in average, for
large systems of 400 processes. It is interesting to mention that
the low quality IC approach has also an average execution time
which is equal or comparable to the much better quality heuris-
tics (except BF, of course). This is because it tries to improve on
the worst-case delays through the iterative loop presented in
DelayEstimate, Figure 6.3.

Let us turn our attention to the three approaches CS, RT1, and
RT2 that, like BF, consider conditions during the analysis but
also try to perform a trade-off between quality and execution
time. Figure 6.15 shows that the pessimism of the analysis is
dramatically reduced by considering the conditions during the
analysis. The RT1 and RT2 approaches, which visit each uncondi-
tional subgraph, perform in average better than the CS approach
that considers condition separation for the whole graph. How-
ever, CS is comparable in quality with RT1, and even performs
better for graphs of size smaller than 240 processes (4 condi-
tions, maximum 16 subgraphs).

The RT2 analysis that tries to improve the worst case response
times using the MaxSeparations, as opposed to RT1, performs best
among the non-brute-force approaches. As can be seen from
Figure 6.15, RT2 has less than 20% average deviation from the
solutions obtained with the brute force approach. However, if

CHAPTER 6

190

faster runtimes are needed, RT1 can be used instead, as it is
twice faster in execution time than RT2.

We were also interested to compare the approaches with
respect to the number of unconditional subgraphs and the num-
ber of conditional process graphs in an application. For the
results depicted in Figure 6.16 we have assumed CPGs consisting
of 2, 4, 8, 16, and 32 unconditional subgraphs of maximum 50
processes each, allocated to 8 processors. Figure 6.16 shows that
as the number of subgraphs increases, the differences between
the approaches grow while the ranking among them remains the
same, as resulted from Figure 6.15. The CS approach performs

0

20

40

60

80

100

0 5 10 15 20 25 30

CS

IC

RT2
BF

RT1

Figure 6.16: Comparison of the Schedulability
Analysis Approaches for CPGs Based on the

Number of Unconditional Subgraphs

Number of unconditional subgraphs

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

191

better than RT1 with a smaller number of subgraphs, but RT1

becomes better as the number of subgraphs in the CPGs
increases.

Figure 6.17 presents on a logarithmic scale the average per-
centage deviations for systems consisting of 1, 2, 3, 4 and 5 con-
ditional process graphs of 160 nodes each. As the number of
conditional process graphs increases, the IC and CS approaches
become more pessimistic. However, RT1 and RT2 perform very
well, with RT2 being the least pessimistic approach (except the
BF approach, which is not depicted in Figure 6.17).

Figure 6.17: Comparison of the Schedulability Analysis
Approaches Based on the Number of CPGs

Number of conditional process graphs

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

10

100

CS

IC

RT2

RT1

1 1.5 2 2.5 3 3.5 4 4.5 5

CHAPTER 6

192

6.8.2 SCHEDULABILITY ANALYSIS WITH TTP AND
BUS ACCESS OPTIMIZATION

For the evaluation of our message scheduling approaches over
TTP we used applications generated for experimental purpose.
We considered architectures consisting of 2, 4, 6, 8 and 10 nodes.
Forty processes were assigned to each node, resulting in sets of
80, 160, 240, 320 and 400 processes. Thirty applications were
generated for each of the five dimensions. Thus, a total of 150
applications were used for experimental evaluation. Worst-case
computation times, periods, deadlines, and message lengths
were assigned randomly within certain intervals. For the com-
munication channel we considered a transmission speed of 256
Kbps. The maximum length of the data field in a slot was 32
bytes and the frequency of the TTP controller was chosen to be 20
MHz. These experiments were also run on a SUN Ultra 10 work-
station.

For each of the 150 generated examples and each of the four
message scheduling approaches we have obtained the near-opti-
mal values for the cost function (degree of schedulability,
Section 6.6.1) as produced by our SA based algorithm (see
Section 6.7.2). For a given example, these values might differ
from one message passing approach to another, as they depend
on the optimization parameters and the schedulability analysis
which are particular for each approach. Figure 6.18 presents a
comparison based on the average percentage deviation of the
cost function obtained for each of the four approaches, from the
minimal value among them. The percentage deviation is calcu-
lated according to the Equation 6.22.

The DP approach is, generally, able to achieve the highest
degree of schedulability, which in Figure 6.18 corresponds to the
smallest deviation. In the case the packet size is properly
selected, by scheduling messages dynamically we are able to
efficiently use the available space in the slots, and thus reduce
the release jitter. However, by using the MM approach we can

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

193

obtain almost the same result if the messages are carefully allo-
cated to slots as does our optimization strategy.

Moreover, in the case of larger process sets, the static
approaches suffer significantly less overhead than the dynamic
approaches. In the SM and MM approaches the messages are
uniquely identified by their position in the MEDL. However, for
the dynamic approaches we have to somehow identify the
dynamically transmitted messages and packets. Hence, for the
DM approach we consider that each message has several identi-
fier bits appended at the beginning of the message, while for the
DP approach the identification bits are appended to each packet.
Not only the identifier bits add to the overhead, but in the DP

approach, the transfer and delivery processes (see Figure 3.6 on
page 58) have to be activated for each sending and receiving of a
packet, and so interfere with the other processes.

Figure 6.18: Comparison of the Four Approaches to
Message Scheduling over TTP

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300 350 400 450
Number of processes

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

SM
MM
DM
DP

Ad-hoc

CHAPTER 6

194

Therefore, for larger applications (e.g., 400 processes), MM out-
performs DP, as DP suffers from large overhead due to its
dynamic nature. DM performs worse than DP because it does not
split the messages into packets, and this results in a mismatch
between the size of the messages dynamically queued and the
slot size, leading to unused slot space that increases the jitter.
SM performs the worst as it does not permit much room for
improvement, leading to large amounts of unused slot space.
Also, DP has produced a MEDL that resulted in schedulable appli-
cations for 1.33 times more cases than the MM and DM. MM, in its
turn, produced two times more schedulable results than the SM

approach.
Together with the four approaches to message scheduling a so

called ad-hoc approach is also presented. The ad-hoc approach
performs scheduling of messages without trying to optimize the
access to the communication channel. The ad-hoc solutions are
based on the MM approach and consider a design with the TDMA

configuration consisting of a simple, straightforward allocation
of messages to slots. The lengths of the slots were selected to
accommodate the largest message sent from the respective node.
Figure 6.18 shows that the ad-hoc alternative is constantly out-
performed by any of the optimized solutions. This demonstrates
that significant gains can be obtained by optimization of the
parameters defining the access to the communication channel.

Next, we have compared the four approaches with respect to
the number of messages exchanged between different nodes and
the maximum message size allowed. For the results depicted in
figures 6.19 and 6.20 we have assumed applications of 80 pro-
cesses allocated to 4 nodes. Figure 6.19 shows that, as the num-
ber of messages increases, the difference between the
approaches grows while the ranking among them remains the
same. The same holds for the case when we increase the maxi-
mum allowed message size (Figure 6.20), with a notable excep-

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

195

tion: for large message sizes MM becomes better than DP, since
DP suffers from larger overhead due to its dynamic nature.

The above comparison between the four message scheduling
alternatives is mainly based on the issue of schedulability. How-
ever, when choosing among the different policies, several other
parameters can be of importance. For example, a static alloca-
tion of messages can be beneficial from the point of view of test-
ing and debugging and has the advantage of simplicity. Similar
considerations can lead to the decision not to split messages. In
any case, however, optimization of the bus access scheme is
highly desirable.

0

5

10

15

20

25

30

10 15 20 25 30 35 40 45 50

SM
MM
DM
DP

Number of messages

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

Figure 6.19: Four Approaches to Message Scheduling over
TTP: The Influence of the Messages Number

CHAPTER 6

196

We were also interested in the quality of our greedy heuristics.
Thus, we have run all the examples presented above, using the
greedy heuristics and compared the results with those produced
by the SA based algorithm. Table 6.2 shows the average and max-
imum percentage deviations of the cost function values produced
by the greedy heuristics from those generated with SA, for each of
the application dimensions. All the four greedy heuristics per-
form very well, with less than 2% loss in quality compared to the
results produced by the SA algorithms. The execution times for
the greedy heuristics were more than two orders of magnitude
smaller than those with SA.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

SM
MM
DM
DP

Maximum number of bytes in a message

Figure 6.20: Four Approaches to Message Scheduling over
TTP: The Influence of the Message Sizes

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

197

6.8.3 THE VEHICLE CRUISE CONTROLLER

We have applied our approaches in sections 6.3 and 6.4 to the
real-life example implementing a vehicle cruise controller
described in Section 2.3.3:

 • The hardware architecture considered consists of five nodes
interconnected by a TTP bus, and is presented in Figure 2.7a
on page 40.

 • We have used the software architecture for event-driven sys-
tems, outlined in Section 3.4.

 • We have applied the analyses in Section 6.3 to the mapped
CPG, modeling the CC system presented in Figure 2.9 on
page 42, but without considering the messages (depicted
with solid circles in that figure). The deadline in this case
has been set to 130 ms.

 • We have also evaluated the scheduling approaches presented
in Section 6.4 using the CC model in Figure 2.9, considering
in this case a deadline of 500 ms.

Table 6.2: Percentage Deviations for the
Greedy Heuristics Compared to Simulated Annealing

Processes 80 160 240 320 400

SM aver. 0.12% 0.19% 0.50% 1.06% 1.63%

max. 0.81% 2.28% 8.31% 31.05% 18.00%

MM aver. 0.05% 0.04% 0.08% 0.23% 0.36%

max. 0.23% 0.55% 1.03% 8.15% 6.63%

DM aver. 0.02% 0.03% 0.05% 0.06% 0.07%

max. 0.05% 0.22% 0.81% 1.67% 1.01%

DP aver. 0.01% 0.01% 0.05% 0.04% 0.03%

max. 0.05% 0.13% 0.61% 1.42% 0.54%

CHAPTER 6

198

For the approaches in Section 6.3, that aim at reducing the
pessimism of the analysis by using the conditions in the model,
we have obtained the following results. Without considering the
conditions, IC obtained a worst case delay of 138 ms, thus the
system resulted as being unschedulable. The system has also
been declared as unschedulable by the Conditions Separation
(CS) approach, which has produced a result of 132 ms.

However, the Brute Force approach (BF) has produced a worst-
case delay of 124 ms which proves that the system implementing
the vehicle cruise controller is, in fact, schedulable. Both
Relaxed Tightness alternatives (RT1 and RT2) have produced the
same worst case delay of 124 ms as the BF.

For the techniques in Section 6.4, where we have proposed
four message scheduling approaches using the TTP, we have the
following results concerning the cruise controller example. The
ad-hoc solution and the SM approach failed to produce a schedu-
lable solution (in both cases, 27 out of 32 processes had a
response time larger than the deadline).

On the other hand, with the other three approaches, schedula-
ble solutions were produced, DP generating the smallest cost
function followed in this order by MM and DM. The deviation of
the MM approach from DP, calculated according to Equation 6.22,
was of 2.44%, while for the DM approach the deviation was of
11.97% from DP.

Based on these results, and on the individual properties of
each of the message scheduling approaches (see Section 6.4), the
designer can decide which approach to use for the cruise control-
ler implementation. However, the SM approach cannot be used
for the vehicle cruise controller because it leads to an unschedu-
lable system.

SCHEDULABILITY ANALYSIS AND BUS ACCESS OPTIMIZATION

199

This chapter has constructed, step by step, a schedulability
analysis for applications with data and control dependencies
distributed on event-driven systems. The analysis will be used
in the next chapter to determine the schedulability of the
designs produced by a mapping and scheduling strategy that
considers an incremental design process, in a fashion similar to
our approach discussed in Chapter 5 for time-driven systems.

201

Chapter 7
Incremental Mapping for

Event-Driven Systems

IN CHAPTER 5 we have discussed an incremental design strat-
egy addressed to systems where both processes and messages
are statically scheduled. However, as mentioned before, consid-
ering preemptive priority based scheduling at the for processes,
with time triggered static scheduling for messages, can be the
right solution under certain circumstances.

Hence, in this chapter we concentrate on scheduling and map-
ping of hard real-time systems which are implemented on dis-
tributed architectures. Process scheduling is based on a static
priority preemptive approach while the bus communication is
performed using the TTP. The mapping and scheduling tasks are
considered in the context of an incremental design process as
outlined in Section 2.2.

In Section 6.5 we have proposed four approaches for schedul-
ing of messages using TTP that differ in the way the messages
are allocated to the communication channel (either statically or
dynamically) and whether they are split or not into packets for

CHAPTER 7

202

transmission. For each of these approaches, we have also devel-
oped a corresponding schedulability analysis.

Comparing these four approaches, in Section 6.8.2 we con-
clude that while the Dynamic Packets Allocation (DP) approach
performs generally the best, since the dynamic scheduling of
messages is able to reduce release jitter, but using the Multiple
Message Allocation (MM) approach we can obtain almost the
same result if the messages are carefully, off-line, allocated to
slots. Moreover, in the case of larger process sets MM outper-
forms DP, as DP suffers from large overhead due to its dynamic
nature. Also, DM performs worse than DP and MM because it does
not split the messages into packets, and this results in a mis-
match between the size of the messages dynamically queued and
the slot size, leading to unused slot space that increases the jit-
ter. SM performs the worst as it does not permit much room for
improvement, leading to large amounts of unused slot space.

Therefore, for the purpose of this chapter, we consider that the
messages are scheduled using the MM approach, and for the
details of the corresponding schedulability analysis the reader is
referred to Section 6.5. The discussion can easily be extended to
any of the other three message passing approaches presented
before.

The chapter is divided into five sections. The next two sections
present some aspects of the general mapping and scheduling
problem for event-driven systems, and the issues related to con-
sidering these design tasks within an incremental design pro-
cess. Section 7.3 introduces the detailed problem formulation
and the quality metrics we have defined. The mapping and
scheduling strategy is presented in Section 7.4, and the
approaches are evaluated in Section 7.5.

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

203

7.1 Application Mapping and Scheduling
In Section 5.1 of we have discussed some of the problems related
to mapping and scheduling in the context of time-driven sys-
tems. In the beginning of this section we are going to have a look
at the same design tasks, but in the context of event-driven sys-
tems, without considering, for the moment, an incremental
design process. The particular issues related to mapping and
scheduling for event-driven systems in the context of an incre-
mental design approach will be presented later on in the discus-
sion.

Example 7.1: Let us consider the example in Figure 7.1,
where we have three system nodes N1, N2, N3 (N1 and N3
having the same speed) and the TTP bus. Our task is to map
P1, P2 and P3 so that all deadlines are met. Process P1 sends
message m1 to P3 and message m2 to P2.

In the configuration presented in Figure 7.1a P1 is mapped
on N3, P3 on N1 and P2 is mapped on node N2. Both m1 and
m2 have to be sent in slot S3 corresponding to node N3 where
the sender process P1 is mapped. With the bus configuration
such that m1 is scheduled in the first round while m2 is
scheduled in the second round, P2 misses its deadline (it has
to wait for message m2 sent by P1).

However, with the same message schedule, if we map P1 on
N1 and P3 on N3 as depicted in Figure 7.1b, m1 and m2 are
sent in slot S1 (corresponding to node N1) which comes before
S3, and P2 does not miss its deadline, receiving message m2
on time. This could have also been achieved by a different
scheduling of the messages presented in Figure 7.1c, where
message m2 is scheduled in the first round, and m1 in the
second, with the same mapping as in Figure 7.1a.

CHAPTER 7

204

N3

N2

N1

m1

m2 m2 m1

P1 P1

P2

P2

P3 P3

a) Processes P1 on N3, P3 on N1:

b) Processes P1 on N1, P3 on N3:

Bus

Round S3

m2 m1 m2 m1

N3

N2

N1

c) Same mapping as in case a,

P1 P1P2 P2

P3 P3

Figure 7.1: Mapping and Scheduling Example
for Event-Driven Systems

N1

N2

N3 m1

m2 m2 m1

P1 P1

P2 P2

P3 P3

Bus

Round

Bus

TTP TTP

N1 N2

e) Architecture

TTP

N3

message m2 sent first: P2 meets its deadline

Processes P2 mapped on N1 meets its deadline

P2 misses its deadline

Release Jitter
Running process
Message
Process activation
Deadline

P1

P2 P3

m2 m1

d) Application

S1

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

205

However, as we have shown in Chapter 5 in the context of
time-driven systems, it is not enough to produce a mapping and
scheduling so that the system is schedulable if we are to support
an incremental design process as discussed in Section 2.2.

Thus, we would like to perform mapping and scheduling such
that: the timing constraints are satisfied, the modifications to
the existing applications are minimized, and there is a good
chance that future applications can easily be added to the
resulted system.

Example 7.2: To illustrate the role of mapping and schedul-
ing in the context of an incremental design process, let us
consider the example in Figure 7.2, where we have two pro-
cessors with the same speed connected by a TTP bus. With
black we represent the set of already running applications ψ
while the current application Γcurrent to be mapped and sched-
uled is represented in gray and consists of two processes and
three messages.

In order for a system to be schedulable, a necessary condi-
tion is that the utilization factor of any node is greater than
one. We say that the processor can be “filled up” with pro-
cesses until it reaches an utilization factor of one (the square
depicting the processor is full). The utilization factor Ui of a
process Pi is the ratio between the worst-case execution time
Ci of that process and its period Ti: Ui=Ci / Ti. The utilization
factor of a node is the sum of the utilization factors of all pro-
cesses mapped on that node. The processes and messages
that are to be mapped on the processors are depicted as
blocks. The height of a process block is equal with its utiliza-
tion factor, while the length of a message block gives the size
of the message. White space on a processor represents avail-
able utilization, while white space on the bus represents
available slack in the schedule table.

Now, let us suppose that, in the future, another application
Γfuture has to be mapped on the system. Γfuture consists of two

CHAPTER 7

206

F
ig

u
re

 7
.2

:
In

cr
em

en
ta

l M
ap

pi
n

g
an

d
S

ch
ed

u
li

n
g

E
xa

m
pl

e
fo

r
E

ve
n

t-
D

ri
ve

n
 S

ys
te

m
s

Γ f
u

tu
re

 P
ro

ce
ss

 u
ti

li
za

ti
on

s:

m
4

(2
 b

yt
es

)
m

5
(6

 b
yt

es
)

P
3

P
4

a)
 E

xi
st

in
g

sy
st

em
 c

on
fi

gu
ra

ti
on

b
)

F
ir

st
 m

ap
pi

n
g

al
te

rn
at

iv
e

c)
 S

ec
on

d
m

ap
pi

n
g

al
te

rn
at

iv
e

0.
3

0.
45

0.
25

0.
5

0.
2

0.
3

S
la

ck
, A

va
il

ab
le

 u
ti

li
za

ti
on

ψ Γ c
u

rr
en

t
P

ro
ce

ss
 u

ti
li

za
ti

on
s:

m
es

sa
ge

 s
iz

es
:

P
2

P
1 m
1

m
2

m
3

m
es

sa
ge

 s
iz

es
:

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

207

processes and two messages represented as hashed blocks.
We can observe that the new application can be scheduled

only in the second case, presented in Figure 7.2c. If Γcurrent
has been implemented as in Figure 7.2b, we are not able to
schedule process P4 and message m5 of Γfuture. The way our
current application is mapped and scheduled will influence
the likelihood of successfully mapping additional functional-
ity on the system without being forced to modify the imple-
mentation of already running applications.

7.2 Mapping and Scheduling in an Incremental
Design Approach

We model an application Γcurrent as a set of conditional process
graphs, as outlined in Section 2.3.1. Thus, for each process Pi we
know the set NPi

 of potential nodes on which it could be mapped
and its worst-case execution time on each of these nodes. The
underlying architecture is as presented in Section 3.4. We con-
sider fixed priority preemptive scheduling for processes and a
time-triggered message passing policy, as imposed by the TTP

protocol.
Our goal is to map and schedule an application Γcurrent on a

system that already implements a set ψ of applications, consid-
ering the following requirements, outlined previously in
Chapter 5:

Requirement a All constraints on Γcurrent are satisfied and
minimal modifications are performed to
the applications in ψ.

Requirement b New applications Γfuture can be mapped on
top of the resulting system.

If it is not possible to map and schedule Γcurrent without modify-
ing the already running applications, we have to change the map-

CHAPTER 7

208

ping and scheduling of some applications in ψ. However, even
with serious modifications performed on ψ, it is still possible that
certain constraints are not satisfied. In this case the hardware
architecture has to be changed by, for example, adding a new pro-
cessor. Here we will not discuss this last case, but will concen-
trate on the situation where a possible mapping and scheduling
which satisfies requirement a can be found, and this solution has
to be further improved by considering requirement b.

In order to achieve our goals, we need certain information to
be available concerning the set of applications ψ as well as the
possible future applications Γfuture. In Section 2.3.2 we have pre-
sented the type of information we consider available for the
existing applications in ψ, while in Section 5.2.1 we have shown
how we can capture the characteristics of future time-driven
applications. In the next section we outline the characterization
of future event-driven applications. Moreover, as in the case of
Chapter 5, we consider that Γcurrent can interact with the previ-
ously mapped applications ψ by reading messages generated on
the bus by processes in ψ.

7.2.1 CHARACTERIZING FUTURE APPLICATIONS

In Section 5.2.1 we have argued that, given a certain limited
application area (e.g., automotive electronics), it is possible to
characterize the family of applications which in the future would
be added to the current system.

Thus, we consider that, concerning the future applications, we
know the set SU = {Umin, ..., Ui, ..., Umax} of possible processor uti-
lization factors for processes, and the set Sb = {bmin, ..., bi, ...,
bmax} of possible message sizes. The processor utilization factor
Ui provides a measure of the computational load on a node Ni

due to a process Pi, and is expressed as

. (7.1)Ui
Ci
Ti
------=

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

209

The utilization factors in SU are considered relative to the
slowest node in the system. All the other nodes are character-
ized by a speedup factor relative to this slowest node.

Thus, the utilization factor an entire application is given by

. (7.2)

We also assume that we know the distributions of probability
fSU(U) for U ∈ SU and fSb(b) for b ∈ Sb.

Example 7.3: For example, we might have utilization fac-
tors SU = {0.02, 0.05, 0.1, 0.2} for the future application. If
almost half of the processes are assumed to have an utilization
factor of 0.1, and there is a lower probability of having pro-
cesses with utilization factors of 0.2 and 0.02, then our distri-
bution function fSU(U) could look like this: fSU(0.02) = 0.15,
fSU(0.05) = 0.25, fSU(0.1) = 0.45, fSU(0.2) = 0.15.

Another information is related to the period of future applica-
tions. In particular, the smallest expected period Tmin is
assumed to be given, together with the expected necessary bus
bandwidth bneed inside such a period Tmin. As will be shown later,
this information is used in order to provide a fair distribution of
slacks on the bus.

7.3 Quality Metrics and Exact Problem
Formulation

Similarly to our approach to incremental mapping and schedul-
ing for time-driven systems in Chapter 5, we develop two design
criteria and associated metrics for event-driven systems, which
are able to determine how well a system implementation sup-
ports an incremental design process.

We start by observing that a designer will be able to map and
schedule an application Γfuture on top of a system implementing

U Ui

i 1=

n

∑=

CHAPTER 7

210

ψ and Γcurrent only if there are sufficient resources available. In
our case, the resources are the processor time and the band-
width on the bus. In the context where processes are scheduled
according to a fixed priority preemptive policy and messages are
scheduled statically, having free resources translates into hav-
ing enough processor capacity, and having space left for mes-
sages in the bus slots. We measure the processor capacity using
the available utilization, while the available resources on the
bus are called slack.

It is to be noted that the total quantity of computation and
communication power available on our system after we have
mapped and scheduled Γcurrent on top of ψ is the same regardless
of the mapping and scheduling policies used. What depends on
the mapping and scheduling strategy is the distribution of the
available utilization on each processor, the size of the individual
slacks on the bus, and the distribution of slacks along the time
line. It is the distribution of available utilization and the size
and distribution of the slacks that characterizes the quality of a
certain design alternative. In this section we introduce the
design criteria which reflect the degree to which one design
alternative meets the requirement b introduced previously. For
each criterion we provide metrics which quantify the degree to
which the criterion is met. Relative to processes we have intro-
duced one criterion which reflects how well the resulted avail-
able utilization on the nodes fits the requirements of a future
application. For messages, there are two criteria. The first one
reflects how well the resulted slack sizes fit a future application,
and the second criterion expresses how well the slack is distrib-
uted over time.

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

211

7.3.1 PROCESSES RELATED CRITERION

The distribution of available utilization on the nodes, resulted
after implementation of Γcurrent on top of ψ, should be such that it
best accommodates a given family of applications Γfuture, charac-
terized by the set SU and the probability distribution fSU as out-
lined before.

Example 7.4: Let us consider the example in Figure 7.2,
where we have two processors and the applications ψ and
Γcurrent are already mapped. Suppose that application Γfuture
consists of the two processes, P3 and P4. If we schedule
Γcurrent like in Figure 7.2b it is impossible to fit Γfuture because
there is not enough available utilization on any of the
processors that can accommodate process P4. A situation as
the one depicted in Figure 7.2c is desirable, where the
resulted available utilization is such that the future
application can be accommodated.

In order to measure the degree to which the available utiliza-
tion in a given design alternative fits the future applications, we
provide a metric C1

P which indicates to what extent the largest
future application (considering the sum of available process uti-
lization) could be mapped on top of the current design. This
potentially largest application is determined knowing the total
size of the available utilization, and the characteristics of the
application: SU and fSU.

Example 7.5: For example, if our total available utilization
on all the processors is of 1.81 then we have to distribute this
utilization according to the probabilities in fSU. Considering
the numerical example for processes given in Example 7.3,
the largest application will be estimated to have a total of 20
processes: three processes of utilization 0.02, 5 of 0.05, 9 pro-
cesses (almost half, fSU(0.1) = 0.45) of utilization 0.1, and 3 of

CHAPTER 7

212

0.2. If the number of processes for a particular dimension is
not an integer, then we use the ceiling.

After we have determined the largest Γfuture we apply a bin-
packing algorithm [Mar90] using the best-fit policy in which we
consider processes as the objects to be packed, and the available
utilization as containers. The total utilization of unpacked pro-
cesses U0 relative to the total utilization of the process set Uf

gives the C1
P metric: C1

P = (U0 / Uf) · 100.

Example 7.6: In the case presented in Figure 7.2b U1 = 0.3
and U2 = 0.25, and P2 represents 45% of the largest possible
future application. In this case C1

P = 45%. However, in
Figure 7.2c were we were able to completely map the future
application C1

P = 0%.

7.3.2 CRITERIA RELATED TO MESSAGES

The first criterion for messages is similar to the one defined for
processes. Thus, the slack sizes in the message schedule table
MEDL (see Section 3.2.1) resulted after implementation of Γcurrent

on top of ψ should be such that they best accommodate a given
family of applications Γfuture, characterized by the set Sb and the
probability distribution fSb for messages.

Example 7.7: Let us consider the example in Figure 7.2,
where we have two processors and the applications ψ and
Γcurrent are already mapped. Application Γfuture has two mes-
sages m4 and m5. It can be observed that the best configura-
tion, taking into consideration only slack sizes, is to have a
contiguous slack. However, in reality, it is almost impossible
to map and schedule the current application such that a con-
tiguous slack is obtained. Not only is it impossible, but it is
also undesirable from the point of view of the second design
criterion, discussed next. On the other side, as we can see
from Figure 7.2b, if we schedule Γcurrent so that it fragments

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

213

too much the slack, it is impossible to fit Γfuture because there
is no slack that can accommodate message m5. A situation as
the one depicted in Figure 7.2c is desirable, where the
resulted slack sizes can accommodate the characteristics of
the Γfuture application.

In order to measure the degree to which the slack sizes in a
given design alternative fit the future applications, we provide
the metric C1

m. The metric indicates how much of the communi-
cations of the largest future application which theoretically
could be mapped on the system if the slacks on the bus would be
summed, can be mapped on the current design alternative. The
messages accounting for the largest amount of communication
are determined, as shown above for processes, knowing the total
size of the available slack, and the characteristics of the applica-
tion: Sb and fSb.

C1
m is calculated similarly to the metric C1

P but, instead of
packing the processes as objects, we try to pack the messages
into the available slack on the bus. C1

m is then the total size of
unpacked messages, relative to the total size of messages in the
largest future application.

Example 7.8: For Figure 7.2b, where m5 could not be sched-
uled, C1

m is 75% because m4 of 6 bytes represents 75% of the
total message sizes of 8 bytes. For the design alternative in
Figure 7.2c C1

m is 0% because all the messages have been
scheduled.

We have just discussed a metric for how well the sizes of the
slacks fit a possible future application. A similar metric is
needed to characterize the distribution of slacks over time.

During implementation of Γcurrent we aim for a slack distribu-
tion such that the future application with the smallest expected
period Tmin and with the expected necessary bandwidth bneed

inside the period Tmin, can be accommodated. The minimum

CHAPTER 7

214

over the slacks inside each Tmin period, which is available peri-
odically to the messages of Γfuture, is the C2

m metric.

Example 7.9: In Figure 7.3 we present a message schedule
scenario. We consider a situation with Tmin = 120 ms and
bneed = 40 ms. The length of the schedule table is 360 ms, and
the already scheduled messages of ψ and Γcurrent are depicted
in black.

Let us consider the situation in Figure 7.3a. In the first
period Tmin, Period 1, there are 40 ms of slack available on
the bus, in the second period 80 ms, and in the third period
no slack is available. Hence, the total slack a future applica-
tion with a period Tmin can use on the bus in each period is
C2

m = min(40, 80, 0) = 0 ms. In this case, the messages cannot
be scheduled. However, if we move m1 to the left in the
schedule table, we are able to create, in Figure 7.3b, 40 ms of
slack in each period, resulting a C2

m = 40 ms = bneed.

CP
2 = min(40, 80, 0) = 0ms

Periodic slack

Bus
Period 1

Tmin

Period 2 Period 3

360 ms

Figure 7.3: Example for the Second Message
Design Criterion

Slack

Bus a)
m1

b) CP
2 = min(40, 40, 40) = 40ms

ψ and Γcurrent

Tmin = 120
bneed = 40

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

215

7.3.3 COST FUNCTION AND EXACT PROBLEM FORMULATION

In order to capture how well a certain design alternative meets
the requirement b stated previously, in Chapter 5 we have com-
bined the design metrics in a cost function C. In the case of
event-driven systems and the metrics presented in this chapter,
the cost function is constructed similarly, as:

C= , (7.3)

where the metric values are weighted by the constants wi.
Our mapping and scheduling strategy will try to minimize

this function. A design alternative that does not meet the second
design criterion for messages is not considered a valid solution.
Thus, using the last term, we strongly penalize the cost function
if bneed is not satisfied, by using high values for the w2

m weight.
At this point, we can give an exact formulation to our problem,

which is synonymous with the problem addressed in Chapter 5
in the context of time-driven systems: Given an existing set of
applications ψ which are already mapped and scheduled, and an
application Γcurrent to be mapped on top of ψ, we are interested to
find a mapping and scheduling of Γcurrent which satisfies all
deadlines such that the existing applications are disturbed as
little as possible. In our context, this means finding the subset
Ω ⊆ ψ of old applications to be remapped and rescheduled such
that we produce a valid solution for Γcurrent ∪ Ω and the total cost
of modification R(Ω), as introduced in Section 2.3.2, is mini-
mized. At the same time, the solution should minimize the cost
function C, considering a family of future applications character-
ized by the sets SU and Sb, the functions fSU and fSb as well as the
parameters Tmin and bneed.

w1
P C1

P()
2

w1
m C1

m()
2

w2
mmax 0 bneed, C2

m–()+ +

CHAPTER 7

216

7.4 Mapping and Scheduling Strategy
The mapping and scheduling proposed in this section is similar
to the one outlined in Section 5.4.2 for time-driven systems. The
differences lie in the formulation of the design criteria and met-
rics, how are these used to select potential moves, and in the def-
inition of the subset selection heuristics, which are tuned for
event-driven systems.

As shown in Figure 7.4, our mapping and scheduling strategy
(MH) has two main steps. In the first step we try to obtain a valid
solution for Γcurrent ∪ Ω so that the total modification cost R(Ω) is
minimized (Ω ⊆ ψ is the subset of existing applications that have
to be modified to accommodate Γcurrent). Starting from such a
solution, a second step iteratively improves on the design in
order to minimize the cost function C (Equation 7.3).

We iteratively improve the design using a transformational
approach. A new design is obtained from the current one by per-
forming a transformation called move. We consider the following
moves: moving a process to a different node, and moving a mes-
sage to a different slack on the bus. We only perform valid
moves, which result in a schedulable system. The intelligence of
the Mapping Heuristic lies in how the potential moves are
selected. For each iteration a set of potential moves is generated
by the PotentialMoveX functions. The SelectMoveX functions then
evaluate these moves with regard to the respective metrics and
selects the best one to be performed.

7.4.1 THE INITIAL MAPPING AND SCHEDULING

The first step of MH consists of an iteration that tries subsets
Ω ⊆ ψ with the intention to find that subset Ω = Ωmin which pro-
duces a valid solution for Γcurrent ∪ Ω such that R(Ω) is minimized
(lines 3–23 in Figure 7.4).

Given a subset Ω, the InitialMappingScheduling function (IMS)
constructs a mapping and schedule for Γcurrent ∪ Ω that meets the

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

217

Figure 7.4: The Mapping and Scheduling Strategy
to Support Iterative Design

MappingSchedulingStrategy (MH)
1 Ω=∅
2

3 -- Step 1: try to find a valid schedule for Γcurrent that minimizes R(Ω)
4 repeat
5 succeeded=IMS(ψ \ Ω, Γcurrent ∪ Ω) -- initial mapping and scheduling
6 ASAP(Γcurrent ∪ Ω); ALAP(Γcurrent ∪ Ω)
7 -- compute worst case ASAP–ALAP intervals for messages
8 if succeeded then
9 -- try to satisfy the second message related design criterion
10 repeat
11 -- find moves with highest potential to maximize C2

m

12 move_set = PotentialMoveC2
m(Γcurrent ∪ Ω)

13 -- select and perform move which improves most C2
m

14 move = SelectMoveC2
m(move_set)

15 Perform(move)
16 succeeded = C2

m ≥ bneed

17 until succeeded or limit reached
18 end if
19 if succeeded and R(Ω) smallest so far then
20 Ωvalid = Ω; solutionvalid = solutioncurrent
21 end if
22 Ω = NextSubset(Ω) -- try another subset
23 until termination condition
24

25 if not succeeded then modify architecture; go to step 1; end if
26

27

28 -- Step 2: try to improve the cost function C
29 solutioncurrent = solutionvalid; Ωmin = Ωvalid
30 repeat -- find moves with highest potential to minimize C
31 move_set = PotentialMoveC1

P(Γcurrent ∪ Ωmin)
32 ∪ PotentialMoveC1

m(Γcurrent ∪ Ωmin)
33 -- select move which improves C and does not invalidate
34 -- the second message related design criterion
35 move = SelectMoveC1(move_set)
36 Perform(move)
37 until C1 has not changed or limit reached
38

end MappingSchedulingStrategy

CHAPTER 7

218

deadlines (both for processes in Γcurrent and those in Ω), without
worrying about the design criteria in Section 7.3. For IMS we
used as a starting point the mapping algorithm introduced in
[Tin92], based on a simulated annealing strategy. We have mod-
ified the mapping algorithm in [Tin92] to consider during map-
ping a set of previous applications that have already been
mapped, and to schedule the messages according to the TDMA

protocol, using the MM approach (Section 6.5.2). The schedula-
bility test that checks a particular mapping alternative is per-
formed according to our schedulability analysis presented in
Section 6.5.

If IMS succeeds in finding a mapping and a schedule which
meet the deadlines, this is not yet a valid solution. In order to
produce a valid solution we iteratively try to satisfy the second
design criterion for messages (lines 10–17 in Figure 7.4). In
terms of our metrics, that means a mapping and scheduling such
that C2

m ≥ bneed. Potential moves can be the shifting of messages
inside their worst case (largest) [ASAP, ALAP] interval in order to
improve the periodic slack. In PotentialMoveC2

m, line 12, we also
consider movement of processes, trying to place the sender and
receiver of a message on the same processor and, thus, reducing
the bus load. SelectMoveC2

m, line 14, evaluates these moves with
regard to the second design criterion and selects the best one to
be performed.

Example 7.10: Consider Figure 7.3a. In Period 3 on node
N1 there is no available slack. However, if we move message
m1 with 40 ms to the left into Period 2, as depicted in
Figure 7.3b, we create a slack in Period 3, thus the periodic
slack on the bus will be min(40, 40, 40) = 40, instead of 0.

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

219

7.4.2 INCREMENTAL MAPPING AND SCHEDULING STRATEGY

If Step 1 of the MH algorithm (Figure 7.4) has succeeded, a map-
ping and scheduling of Γcurrent ∪ Ω has been produced which cor-
responds to a valid solution. In addition, Ω has the smallest
minimization cost (minimization of the modification cost is
introduced in Section 2.3.2 and detailed in Section 7.4.3). Start-
ing from this valid solution, the second step of the MH strategy
(lines 30–37) tries to improve on the design in order to minimize
the cost function C. In a similar way as during Step 1, we itera-
tively improve the design by successive moves, without invali-
dating the second criterion achieved in the first loop.

The loop ends when there is no improvement to be achieved on
the first two terms of the cost function, or a limit imposed on the
number of iterations has been reached (line 37). For each itera-
tion, the algorithm preforms moves that have the highest chance
to improve the cost function. The moves are generated in the
PotentialMoveC1 functions (lines 31–32), and are evaluated and
selected based on the respective metrics in the SelectMoveC1

function (line 35). We now briefly discuss the PotentialMoveC1
P and

PotentialMoveC1
m functions (PotentialMoveC2

m has been discussed in
the previous section).

PotentialMoveC1
P

Let Uf be the total utilization factor of the largest future applica-
tion Γfmax, and U0 the utilization of that part which cannot be
mapped in the current design alternative. This function is
responsible for selecting moves of processes from one node to
another so that C1

P = (U0 / Uf) · 100 is reduced.
Moving a process Pi, with the utilization factor Ui, from a node

Nj, where it is currently mapped, to a node Nk will increase the
available utilization on node Nj to UNj + Ui, and decrease the
available utilization on Nk to UNk – Ui. To find out U0 in this new
case would mean executing the bin-packing with the processes
of the future application as objects and the new available utili-

CHAPTER 7

220

zation configuration as containers. This can take significant exe-
cution time since it has to be done for each potential move.

In Section 7.3 we have explained how we can estimate the pro-
cesses that make up the largest future application Γfmax based
on the total available utilization and the characterization of
future applications. Let us assume that Γfmax consists of the set
Pfmax = {Pf1, Pf2, ..., Pfn} of processes, and that P0 = {Pfi, Pfi+1, ...,
Pfm} are the ones that cannot be mapped in the current design
alternative. The total utilization requested by the unmapped
processes is U0 = Ufi + Ufi+1 + ... + Ufm. For the potential move of
Pi from Nj to Nk we have to recalculate C1

P which means deter-
mining U0.

In order to reduce the execution time needed by the bin-
packing algorithm, we do not consider all the processes of Γfmax

as objects to be packed. We consider for repacking only those
processes belonging to Γfmax that had to be removed from Nk to
make room for Pi, together with those that were already left
outside. Our heuristic considers that to make room for Pi on
node Nk we remove those processes Pi

Nk
 ⊂ Γfmax mapped on Nk

which have the smallest utilization factor, since they are the
ones that should be easiest to fit on other nodes. The metric used
by SelectMoveC1 to rank this move is the sum of the utilization
factors of processes which are left out after trying to repack the
P0 ∪ Pi

Nk set.
Out of the best moves according the previous metric, we

encourage those that have the smallest impact on the schedula-
bility analysis, since we would like to keep the system schedula-
ble. This means moving processes that have low priority (do not
have a large impact on other processes) and have a response
time that is considerably smaller than their deadline (Di – Ri is
large).

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

221

PotentialMoveC1
m

In order to avoid excessive fragmentation of the slack on the bus
we will consider moving a message to a position that “snaps” to
another existing message. A message is selected for potential
move if it has the smallest “snapping distance,” i.e., in order to
attach it to other message it has to travel the smallest distance
inside the schedule table. We also consider moves that try to
increase the individual slacks sizes. Therefore, we first elimi-
nate slack that is unusable: it is too small to hold the smallest
message of the future application. Then, the slacks are sorted in
ascending order and the smallest one is considered for improve-
ment. Such improvement of a slack is performed through mov-
ing a nearby message, but avoiding to create as a result an even
smaller individual slack.

7.4.3 MINIMIZING THE MODIFICATION COST

In the first step of our mapping strategy, described in Figure 7.4,
we iterate on subsets Ω to search for a valid solution which also
minimizes the total modification cost R(Ω). As a first attempt,
the algorithm searches for a valid implementation of Γcurrent

without disturbing the existing applications (Ω = ∅). If no valid
solution is found successive subsets Ω produced by the function
NextSubset are considered, until a terminating condition is met.

In Section 5.4.3 of Chapter 5 we have presented several
approaches to the implementation of the NextSubset function in
the context of time-driven systems. The same strategies are
used in this chapter, but now in the case of event-driven sys-
tems. The difference lies in the formulation of the ∆ metrics
which guide the subset selection process.

The first approach to the implementation of the NextSubset

function is an exhaustive search algorithm (ES), similar to the
one presented in Section 5.4.3. As shown in that chapter, the
exhaustive approach that finds an optimal solution can be used

CHAPTER 7

222

only for small sets of applications. The second approach pre-
sented in Section 5.4.3 is a greedy heuristic, here named Ad-hoc
Subset Selection (AS), which finds very quickly a valid solution, if
one exists, with the drawback that the corresponding total mod-
ification cost is higher than the optimal one. However, as we
argue in Chapter 5 an intelligent heuristic should be able to
identify the reasons due to which a valid solution has not been
found and use this information when selecting applications to be
included in Ω. The next section presents such a heuristic in the
case of event-driven systems.

Subset Selection Heuristic (SH)

There can be two possible causes for not finding a valid solution:
an initial mapping which meets the deadlines has not been pro-
duced, or the second criterion is not satisfied.

Let us investigate the first reason. If an application Γi is
schedulable, this means that all its processes meet their dead-
lines. If IMS determines that the application is not schedulable
this means that at least one of the processes Pi missed its dead-
line: Ri > Di. Besides the intrinsic properties of the application
that can lead to this situation, process Pi can miss its deadline
also because of the interference of higher priority processes that
are mapped on the same node with Pi, processes that can also
belong to other applications. In this situation we say that there
is a conflict with processes belonging to other applications. We
are interested to find out which applications are responsible for
conflicts encountered by our Γcurrent, and not only that, but also
which ones are flexible enough to move away in order to avoid
these conflicts (Di – Ri is large).

IMS determines a metric ∆i that characterizes the degree of
conflict and the flexibility of application Γi in relation to Γcurrent.
A set of applications Ω will be characterized, in relation to
Γcurrent, by:

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

223

∆(Ω)= . (7.4)

The metric ∆(Ω) will be used by our subset selection heuristic
if IMS has failed to produce a solution which satisfies the dead-
lines. An application with a larger ∆i is more likely to lead to a
valid schedule if included in Ω.

Basically, ∆i is the total amount of interference caused by
higher priority processes of Γi to processes in Γcurrent. For a pro-
cess Pi, the interference Iji from a higher priority process Pj

mapped on the same node, is the time that Pj delays the execu-
tion of Pi, and is given by:

Iji= (7.5)

where Jj is the release jitter of process Pj and a detailed descrip-
tion of how it is calculated in the context of the MM approach for
message scheduling over TTP is given in Section 6.5.2. Figure 7.5
presents in more detail how ∆i is calculated.

If the initial mapping was successful, the first step of MH could
fail during the attempt to satisfy the second design criterion for
messages. In this case, the metric ∆i is computed in a different
way. It will capture the potential of an application Γi to improve
the metric C2

m if remapped together with Γcurrent. Thus, for the
improvement of C2

m we consider a total number of moves from all
the non-frozen applications (determined using
PotentialMoveC2

m(ψ), see Section 7.4.2). For each move that has as
subject mj ∈ Γi, we increment the metric ∆i with the predicted
improvement on C2

m.
MH starts by trying an implementation of Γcurrent with Ω = ∅. If

this attempt fails, because of one of the two reasons mentioned
above, the corresponding metrics ∆i are computed for all Γi ∈ ψ.
Our heuristic SH will then start by finding the ad-hoc solution
ΩAS produced by the AS algorithm (this will succeed if there

∆i
Γi Ω∈
∑

Jj R+
i

Tj
------------------ Cj

CHAPTER 7

224

exists any solution) with a corresponding cost RAS = R(ΩAS) and
a ∆AS = ∆(ΩAS). SH now continues by trying to find a solution with
a more favorable Ω (a smaller total cost R). Therefore, the
thresholds Rmax = RAS and ∆min = ∆AS/n (for our experiments we
considered n = 2) are set. For generating new subsets Ω, the
function NextSubset now follows a similar approach like ES but in
a reverse direction, towards smaller subsets, and it will consider
only subsets with a smaller total cost than Rmax and a larger ∆
than ∆min (a small ∆ means a reduced potential to eliminate the
cause of the initial failure). Each time a valid solution is found,
the current values of Rmax and ∆min are updated in order to fur-
ther restrict the search space. The heuristic stops when no sub-
set can be found with ∆ > ∆min, or a certain imposed limit has
been reached (e.g., on the total number of attempts to find new
sets).

Figure 7.5: Determining the Delta Metrics

DeltaMetrics(Γcurrent, Ω)
1 for each non frozen Γi ∈ Ω do
2 ∆i = 0
3 end for
4

5 for each Pi ∈ Γcurrent do
6 if Ri > Di then
7 for each non frozen Γk ∈ Ω do
8 -- hp(Pi) is the set of processes with higher priority than Pi
9 for each Pj ∈ Γk ∩ hp(Pi) do
10 ∆k = ∆k + Cj

 * (Jj + Ri) / Tj
11 end for
12 end for
13 end if
14 end for
15

16 return ∆
end DeltaMetrics

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

225

7.5 Experimental Results
For the evaluation of our mapping strategies we first used appli-
cations containing 40, 80, 160, 240 and 320 processes represent-
ing the Γcurrent application generated for experimental purpose.
Thirty applications were generated for each dimension, thus a
total of 150 applications were used for experimental evaluation.
We considered an architecture consisting of 10 nodes of different
speeds. For the communication channel we considered a trans-
mission speed of 256 Kbps and a length below 20 meters. The
maximum length of the data field in a bus slot was 8 bytes. All
experiments were run on a SUN Ultra 10.

7.5.1 MODIFICATION COST MINIMIZATION HEURISTICS

The first result concerns the quality of the designs obtained with
our mapping strategy MH using the search heuristic SH com-
pared to the case when the ad-hoc approach AS and the exhaus-
tive search ES are used for subset selection.

For each of the five application dimensions generated we have
considered a set of existing applications ψ consisting of 160, 240,
320, 400 and 480 processes, respectively. The sets contained 4,
6, 8, 10 and 12 applications, each application with an associated
modification cost assigned manually in the range 10 to 100. The
dependencies between applications were such that the total
number of subsets resulted for each set ψ were 8, 32, 128, 256,
and 1024. We have considered that the future applications Γfuture

consist of a process set of 80 processes, randomly generated
according to the following specifications: SU = {0.02, 0.05, 0.1,
0.15, 0.2}, fSU(SU) = {0.1, 0.25, 0.45, 0.15, 0.05}, Sb = {2, 4, 6, 8
bytes}, fSb(Sb) = {0.2, 0.5, 0.2, 0.1}, Tmin = 250 ms, and bneed = 20
ms.

MH has been used to produce a valid solution for each of the
150 process sets representing Γcurrent on top of the existing appli-
cations ψ using the ES, AS and SH approaches to subset selection.

CHAPTER 7

226

For each of the resulted valid solutions, there corresponds a min-
imum modification cost R(Ωmin). Figure 7.6a compares the three
approaches to subset selection based on the modification cost
needed in order to obtain a valid solution. The exhaustive
approach ES is able to obtain valid solutions at the optimum
(smallest) modification cost, (e.g., less than 400, in average, for
systems with 12 applications consisting of a total of 480 pro-
cesses), while the ad-hoc approach AS needs in average 3.11
times more costly modifications in order to obtain valid solutions
(e.g., more than 1100 for 480 processes in Figure 7.6a). However,
in order to find the optimal re-mapping the ES approach needs
large computation times. For example, it can take more than 35
minutes, in average, in order to find the smallest cost subset to
be remapped that leads to a valid solution in the case we have 12
applications (corresponding to 480 processes in Figure 7.6b).
From Figure 7.6 we can see that the proposed heuristic SH per-
forms quite well, needing only 1.84 times larger costs, in aver-
age, in order to obtain a valid schedule at a computation cost
comparable with the fast ad-hoc approach AS (see Figure 7.6b).
For the results in Figure 7.6 we have eliminated those situations
in which a valid solution has not been produced by MH (which
means that there is no solution regardless of the modification
cost).

7.5.2 INCREMENTAL MAPPING AND SCHEDULING HEURISTICS

Next, we were interested to investigate the quality of the map-
ping heuristic MH compared to a so called ad-hoc mapping
approach (AM).

To concentrate on this, we have considered that no modifica-
tions are allowed to the applications in ψ. The AM approach is a
simple, straightforward solution to produce designs which, to a
certain degree, support an incremental process. AM tries to
evenly balance the available utilization remaining after map-
ping the current application. The quality of the designs obtained

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

227

Figure 7.6: Evaluation of the Modification
Cost Minimization Heuristics

0

200

400

600

800

1000

1200

160 240 320 400 480

AS
SH
ES

0
5

10
15
20
25
30
35
40

160 240 320 400 480

AS
SH
ES

Number of processes (applications)

A
ve

ra
ge

 e
xe

cu
ti

on
 t

im
e

[m
in

u
te

s]
A

ve
ra

ge
 m

od
if

ic
at

io
n

 c
os

t
R

(Ω
m

in
)

a) Average modification costs for AS, SH, ES

(4) (6) (8) (10) (12)

Number of processes (applications)
(4) (6) (8) (10) (12)

b) Execution times for AS, SH, ES

CHAPTER 7

228

Figure 7.7: Evaluation of the Design
Transformation Heuristics

0
20
40
60
80

100
120
140
160

40 80 160 240 320

AM
MH
SA

0

5
10

15
20

25
30

35

40 80 160 240 320

AM
MH
SA

A
ve

ra
ge

 e
xe

cu
ti

on
 t

im
e

[m
in

u
te

s]

Number of processes in ψ

Number of processes in ψ

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

b) Execution times for AM, MH, SA

a) Percentage deviations for AM, MH, SA

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

229

with MH and AM were compared with a near-optimal mapping
and schedule obtained with a Simulated Annealing strategy (SA)
strategy (Appendix A), that minimizes the cost function C (Sec-
tion 7.3.3). One of the drawbacks of the SA strategy is that in
order to find near-optimal solutions it needs very large computa-
tion times. Such a strategy, although useful for the final stages
of the system synthesis, cannot be used inside a design space
exploration cycle.

MH, SA and AM have been used to map each of the 150 applica-
tions representing Γcurrent on the existing applications ψ. For
each of the resulted designs, the objective function C has been
computed. Very long and expensive runs have been performed
with the SA algorithm for each process set and the best ever solu-
tion produced has been considered as the near-optimum for that
process set. We have compared the cost function obtained for the
150 applications considering each of the three mapping algo-
rithms. Figure 7.7a presents the average percentage deviation
of the cost function obtained with the MH and AM from the value
of the cost function obtained with the near-optimal scheme. We
have excluded from the results in Figure 7.7, 28 solutions
obtained with AM for which the second design criterion for mes-
sages has not been met, and thus the objective function has been
strongly penalized. The average run-times of the algorithms, in
minutes, are presented in Figure 7.7b. The SA approach per-
forms best in terms of quality at the expense of a large execution
time. The execution time can be up to 40 minutes for large appli-
cations of 320 processes. MH performs very well, and is able to
obtain good quality solutions in a very short time. AM is very
fast, but since it does not address explicitly the design criteria
presented in Section 7.2 it has the worst quality of solutions,
according to the cost function.

The most important aspect of the experiments is determining
to which extent the mapping strategies proposed in this chapter
really facilitate the implementation of future applications. To
find this out, we have mapped applications of 40, 80, 160 and

CHAPTER 7

230

240 processes representing the Γcurrent application on top of the
previously generated existing applications ψ. After mapping and
scheduling each of these applications we have tried to add a new
application Γfuture to the resulted system. Γfuture consists of 80
processes, randomly generated according to the same specifica-
tions presented before. The experiments have been performed
two times, using first MH*1 and then AM for mapping Γcurrent. In
both cases we were interested if it is possible to find a valid
implementation for Γfuture on top of Γcurrent using the initial map-
ping algorithm IMS. Figure 7.8a shows the number of successful
implementations in the two cases. In the case Γcurrent has been
mapped with MH*, this means using the design criteria and met-
rics proposed in this chapter, we were able to find a valid sched-
ule for 56% of the total mapping attempts with IMS using Γfuture.
However, using AM to map Γcurrent has led to a situation where
IMS is able to find valid schedules in only 31% of the cases.

Another observation from Figure 7.8 is that when the avail-
able utilization is large, as in the case Γcurrent has only 40 pro-
cesses, it is easy for both MH* and AM to find a mapping that
allows adding future applications. However, as Γcurrent grows to
80, only MH* is able to find a mapping of Γcurrent that supports an
incremental design process, accommodating more than 60% of
the future applications, while using AM only less than 25% are
accommodated. If the remaining utilization is very small, after
we map a Γcurrent of 240, it becomes practically impossible to map
new applications without modifying the current system.

However, in the case the mapping heuristic is allowed to mod-
ify the existing system as discussed in this chapter then we are
able to increase the number of successfully mapped Γfuture appli-
cations to 73% from the total instead of only 56%. The percent-
age of accommodated Γfuture applications, for different
dimensions of Γcurrent, if modifications are allowed on the exist-

1. MH* is the same mapping heuristic as in Figure 7.4, but in which we do
not allow modifications to the existing applications.

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

231

0
20

40
60

80
100

40 80 160 240

MH
AM

0
20
40
60
80

100

40 80 160 240

MS
MH
AM

P
er

ce
n

ta
ge

 o
f

Γ f
u

tu
re

 [
%

]

Figure 7.8: Percentage of Future Applications
Successfully Mapped

Number of processes in Γcurrent

AM
MH*

MH

b) Percentage of Γfuture applications successfully mapped,

Number of processes in Γcurrent

P
er

ce
n

ta
ge

 o
f

Γ f
u

tu
re

 [
%

]

AM
MH*

a) Percentage of Γfuture applications successfully mapped,
no modifications allowed

modifications allowed

CHAPTER 7

232

ing system, is shown by the diagram MH in Figure 7.8b. After
mapping a Γcurrent with 80 processes using MH we are able to
accommodate 88% of the future applications, compared to only
61% in the case we do not allow modifications to the existing sys-
tem (MH*). Such an increase is, of course, expected. The impor-
tant aspect, however, is that it is obtained not by randomly
selecting old applications to be remapped, but by performing
this selection such that the total modification cost is minimized.

7.5.3 THE VEHICLE CRUISE CONTROLLER

Finally, we considered an example implementing a vehicle
cruise controller (CC):

 • The CC has 32 processes, and is modeled as an un-mapped
conditional process graph, presented in Figure 2.9 on
page 42.

 • The cruise controller is to be mapped on an architecture con-
sisting of 5 nodes, interconnected by TTP, as presented in
Figure 2.7a on page 40.

 • The software architecture for event-triggered systems used
by the CC is introduced in Section 3.4.

The system ψ consists of 80 processes generated randomly.
The CC is the Γcurrent application to be mapped. We have also gen-
erated 30 future applications of 40 processes each with the char-
acteristics of the CC, which are typical for automotive
applications. By mapping the CC using MH* we were able to later
map 18 of the future applications, while using AM only 6 of the
future applications could be mapped. MH* and AM do not allow
modifications of the existing system. When modifications are
allowed, using the MH approach, we are able to map 26 of the 30
future applications.

As the experiments have shown, the design criteria proposed
in this chapter, for event-driven systems, are able to drive the
optimization process towards solutions that support an incre-
mental design process.

INCREMENTAL MAPPING FOR EVENT-DRIVEN SYSTEMS

233

This and the previous part of the thesis have addressed ET and
TT systems, respectively. In the next part, we will consider multi-
cluster systems, designed as interconnected clusters of proces-
sors, where each such cluster can be either TT or ET.

 PART IV
Multi-Cluster Systems

237

Chapter 8
Schedulability Analysis and
Bus Access Optimization for

Multi-Cluster Systems

THIS CHAPTER PRESENTS an approach to schedulability analy-
sis and bus access optimization for multi-cluster distributed
embedded systems consisting of time-triggered and event-triggered
clusters, interconnected via gateways, as introduced in Section 3.5.

On the time-triggered clusters (TTC) the processes are sched-
uled based on a non-preemptive static cyclic scheduling policy,
and messages are sent using the TTP, while on the event-trig-
gered clusters (ETC) we use a fixed-priority preemptive schedul-
ing policy for processes, and messages are sent via the CAN bus.

We have proposed a schedulability analysis for multi-cluster
systems, including a buffer size and worst case queuing delay
analysis for the gateways, responsible for routing inter-cluster
traffic. Optimization heuristics for the priority assignment and
synthesis of bus access parameters aimed at producing a sched-
ulable system with minimal buffer needs have also been devel-
oped.

CHAPTER 8

238

This chapter is organized in five sections. The next section
introduces the problems that we are addressing in this chapter.
Section 8.2 presents our proposed schedulability analysis for
multi-cluster systems, and Section 8.3 uses this analysis to
drive the optimization heuristics used for system synthesis. The
last section present the experimental results.

8.1 Problem Formulation
As input to our problem we have an application Γ given as a set
of conditional process graphs mapped on an architecture consist-
ing of a TTC and an ETC interconnected through a gateway.

We are interested first to find a system configuration denoted
by a 3-tuple ψ = <φ, β, π> such that the application Γ is schedula-
ble. Determining a system configuration ψ means deciding on:

 • The set φ of the offsets corresponding to each process and
message in the system (see Section 6.2). The offsets of pro-
cesses and messages on the TTC practically represent the
local schedule tables and MEDLs.

 • The TTC bus configuration β, indicating the sequence and
size of the slots in a TDMA round on the TTC.

 • The priorities of the processes and messages on the ETC, cap-
tured by π.

Once a configuration leading to a schedulable application is
found, we are interested to find a system configuration that min-
imizes the total queue sizes needed to run a schedulable applica-
tion. The approach presented in this chapter can be extended to
cluster configurations where there are several ETCs and TTCs
interconnected by gateways.

Example 8.1: Let us consider the example in Figure 8.1
where we the application G1 mapped on the a two-cluster
system as illustrated in Figure 3.8 on page 63. In the system
configuration of Figure 8.1 we consider that, on the TTP bus,

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

239

Figure 8.1: Scheduling Examples for Multi-Clusters

P1(C1=30) P4(C4=30)

P2(C2=20)

P3(C3=20)

m1 m2(Cm1
=Cm2

=S1)

m1 m2 m3

m3(Cm3
=SG)

N1

TTP

NG

CAN

N2

SG=20 S1=20
Round=40

O2=80

O3=80

J2=15

J3=25

I2=20

r2=55

r3=45

rΓ1=210

TΓ1
=240

wm2
 =10 wm3

=10

DΓ1
=200

Deadline missed!

SG S1

T

P1 P4

P2

P3

m1m2

m1 m2 m3

m3

T

S1 SG

rΓ1
Deadline met!

S1 SG

T

P1 P4

P2

P3

m1m2

m1 m2 m3

m3

T

SG S1

rΓ1
Deadline met!

S1 SG

T

a) G1 misses its deadline

b) S1 is the first slot, m1, m2 are sent sooner, G1 meets its deadline

c) P2 is the high priority process on N2, G1 meets its deadline

O4=180

0 50 100 150 200 240

bus

bus

N1

TTP

NG

CAN

N2

bus

bus

N1

TTP

NG

CAN

N2

bus

bus

CAN
TTP

(Cm1
=Cm2

=Cm3
=10)

T(CT=5)

P1

P2 P3

P4

m1 m2

m3

Application G1

CHAPTER 8

240

the gateway transmits in the first slot (SG) of the TDMA
round, while node N1 transmits in the second slot (S1). The
priorities inside the ETC have been set such that prioritym1 >
prioritym2

 and priorityP3
> priorityP2.

In such a setting, G1 will miss its deadline, which was set
at 200 ms. However, changing the system configuration as in
Figure 8.1b, so that slot S1 of N1 comes first, we are able to
send m1 and m2 sooner, and thus reduce the response time
and meet the deadline. The response times and resource
usage do not, of course, depend only on the TDMA configura-
tion. In Figure 8.1c, for example, we have modified the prior-
ities of P2 and P3 so that P2 is the higher priority process. In
such a situation, P2 is not interrupted when the delivery of
message m2 was supposed to activate P3 and, thus, eliminat-
ing the interference, we are able to meet the deadline, even
with the TTP bus configuration of Figure 8.1a.

8.2 Multi-Cluster Scheduling
In this section we propose an analysis for hard real-time appli-
cations mapped on multi-cluster systems. The aim of such an
analysis is to find out if a system is schedulable, i.e., all the tim-
ing constraints are met. In addition to this, we are also inter-
ested to bound the queue sizes needed to run a schedulable
applications.

On the TTC, an application is schedulable if it is possible to
build a schedule table such that the timing requirements are
satisfied. On the ETC, the answer whether or not a system is
schedulable is given by a schedulability analysis, and we use the
schedulability analysis outlined in Section 6.4.1.

Determining the schedulability of an application mapped on a
multi-cluster system cannot be addressed separately for each
type of cluster, since the inter-cluster communication creates a

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

241

circular dependency: the static schedules determined for the TTC

influence through the offsets the response times of the processes
on the ETC, which on their turn influence the schedule table con-
struction on the TTC.

Example 8.2: In Figure 8.1a, placing m1 and m2 in the
same slot leads to equal offsets for P2 and P3. Because of this,
P3 will interfere with P2 (which would not be the case if m2
sent to P3 would be scheduled in Round 4) and thus the
placement of P4 in the schedule table has to be accordingly
delayed to guarantee the arrival of m3.

In our response time analysis we consider the influence
between the two clusters by making the following observations:

 • The start time of process Pi in a schedule table on the TTC is
its offset Oi.

 • The worst-case response time ri of a TT process is its worst-
case execution time, i.e. ri = Ci (TT processes are not preempt-
able).

 • The response times of the messages exchanged between two
clusters have to be calculated according to the schedulability
analysis to be described in Section 8.2.1.

 • The offsets have to be set by a scheduling algorithm such
that the precedence relationships are preserved. This means
that, if process Pj depends on process Pi, the following condi-
tion must hold: Oj ≥ Oi + ri. Note that for the processes on a
TTC receiving messages from the ETC this translates to set-
ting the start times of the processes such that a process is
not activated before the worst-case arrival time of the mes-
sage from the ETC. In general, offsets on the TTC are set such
that all the necessary messages are present at the process
invocation.

The MultiClusterScheduling algorithm in Figure 8.2 receives as
input the application Γ, the TTC bus configuration β and the ET

process and message priorities π, and produces the offsets φ and

CHAPTER 8

242

response times ρ. The algorithm starts by assigning to all offsets
an initial value obtained by a static scheduling algorithm
applied on the TTC without considering the influence from the
ETC (lines 2–4). The response times of all processes and mes-
sages in the ETC are then calculated according to the analysis in
Section 8.2.1 by using the ResponseTimeAnalysis function (line
10).

Based on the response times, offsets of the TT processes can be
defined such that all messages received from the ETC cluster are
present at process invocation. Considering these offsets as con-
straints, a static scheduling algorithm can derive the schedule
tables and MEDLs of the TTC cluster (line 13). For this purpose we
use the list scheduling based approach presented in
Section 4.2.1.

Figure 8.2: The MultiClusterScheduling Algorithm

MultiClusterScheduling(Γ, β π)
1 -- assign initial values to offsets
2 for each Oi ∈ φ do
3 Oi = initial value
4 end for
5

6 -- iteratively improve the offsets and response times
7 repeat
8 -- determine the response times based on
9 -- the current values for the offsets
10 ρ = ResponseTimeAnalysis(Γ, φ π)
11 -- determine the offsets based on
12 -- the current values for the response times
13 φ = StaticScheduling(Γ, ρ β)
14 until φ not changed
15

16 return φ, ρ
end MultiClusterScheduling

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

243

Once new values have been determined for the offsets, they
are fed back to the response time calculation function, thus
obtaining new, tighter (i.e., smaller, less pessimistic) values for
the worst-case response times (the repeat loop consisting of lines
7–14 in Figure 8.2). The algorithm stops when the response
times cannot be further tightened and, consequently, the offsets
remain unchanged. Termination is guaranteed if processor and
bus loads are smaller than 100% (see Section 6.2) and deadlines
are smaller than the periods.

8.2.1 SCHEDULABILITY AND RESOURCE ANALYSIS

The analysis in this section is used in the ResponseTimeAnalysis

function in order to determine the response times for processes
and messages on the ETC. It receives as input the application Γ,
the offsets φ and the priorities π, and it produces the set ρ of
worst case response times.

We have used the response time analysis outlined in
Section 6.4.1 for the CAN bus (equations 6.4, 6.6, 6.7, and 6.8).
However, the worst-case queuing delay for a message
(Equation 6.6) is calculated differently depending on the type of
message passing employed:

1. From an ETC node to another ETC node (in which case wm
Ni

represents the worst-case time a message m has to spend in
the OutNi queue on ETC node Ni). An example of such a
message is m3 in Figure 8.1, which is sent from the ETC node
N3 to the gateway node NG.

2. From a TTC node to an ETC node (wm
CAN is the worst-case time

a message m has to spend in the OutCAN queue). In
Figure 8.1, message m1 is sent from the TTC node N1 to the
ETC node N2.

3. From an ETC node to a TTC node (where wm
TTP captures the

time m has to spend in the OutTTP queue). Such a message
passing happens in Figure 8.1, where message m3 is sent
from the ETC node N3 to the TTC node N1 through the

CHAPTER 8

244

gateway node NG where it has to wait for a time wm
TTP in the

OutTTP queue.
The messages sent from a TTC node to another TTC node are

taken into account when determining the offsets
(StaticScheduling, Figure 8.2), and thus are not involved directly
in the ETC analysis.

The next sections show how the worst-queuing delays and the
bounds on the queue sizes are calculated for each of the previous
three cases.

From ETC to ETC and from TTC to ETC

The analyses for wm
Ni and wm

CAN are similar. Once m is the highest
priority message in the OutCAN queue, it will be sent by the gate-
way’s CAN controller as a regular CAN message, therefore the
same equation for wm can be used:

. (8.1)

The intuition is that m has to wait, in the worst case, first for
the largest lower priority message that is just being transmitted
(Bm) as well as for the higher priority mj ∈ hp(m) messages that
have to be transmitted ahead of m (the second term). In the
worst case, the time it takes for the largest lower priority mes-
sage mk ∈ lp(m) to be transmitted to its destination is:

. (8.2)

Note that in our case, lp(m) and hp(m) also include messages
produced by the gateway node, transferred from the TTC to the ETC.

We are also interested to bound the size sm
CAN of the OutCAN and

sm
Ni of the OutNi queue. In the worst case, message m, and all the

messages with higher priority than m will be in the queue,
awaiting transmission. Summing up their sizes, and finding out

wm Bm
wm Jj Omj–+

Tj
-- Cj

mj∀ hp m()∈
∑+=

Bm
max

mk∀ lp m()∈
Ck()=

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

245

what is the most critical instant we get the worst-case queue
size:

(8.3)

where sm and sj are the sizes of message m and mj, respectively.

From ETC to TTC

The time a message m has to spend in the OutTTP queue in the
worst case depends on the total size of messages queued ahead
of m (OutTTP is a FIFO queue), the size SG of the gateway slot
responsible for carrying the CAN messages on the TTP bus, and
the frequency TTDMA with which this slot SG is circulating on the
bus:

, (8.4)

where Im is the total size of the messages queued ahead of m.
Those messages mj ∈ hp(m) are ahead of m, which have been
sent from the ETC to the TTC, and have higher priority than m:

(8.5)

where the message jitter Jm is in the worst case the response
time of the sender process, Jm = rS(m).

The blocking factor Bm is the time interval in which m cannot
be transmitted because the slot SG of the TDMA round has not
arrived yet, and is determined as

TTDMA – Om mod TTDMA + OSG
 , (8.6)

where OSG is the offset of the gateway slot in a TDMA round.

sOut
max

m∀
sm

wm Jj Omj–+

Tj
-- sj

mj∀ hp m()∈
∑+

 
 
 
 

=

wm
TTP

Bm
Sm Im+

SG
----------------------- TTDMA+=

Im
wm

TTP
Jm Omj–+

Tj

mj∀ hp m()∈
∑ sj=

CHAPTER 8

246

Determining the size of the queue needed to accommodate the
worst case burst of messages sent from the CAN cluster is done
by finding out the worst instant of the following sum:

. (8.7)

8.2.2 RESPONSE TIME ANALYSIS EXAMPLE

Figure 8.3 presents the equations for our system in
Figure 8.1a. The jitter of P2 depends on the response time of the
gateway transfer process T and the response time of message
m1, J2 = rm1. Similarly, J3 = rm2. We have considered that Jm1

 =
Jm2

 = rT. The response time rm3
 denotes the response time of m3

sent from process P2 to the gateway process T, while rm3’ is the
response time of the same message m3 sent now from T to P4.

The equations are recurrent, and they will converge if the pro-
cessor and bus utilization are under 100% (Section 6.2). Consid-
ering a TDMA round of 40 ms, with two slots each of 20 ms as in
Figure 8.1a, rT = 5 ms, 10 ms for the transmission times on CAN

for m1 and m2, and using the offsets in the figure, the equations
will converge to the values indicated in Figure 8.3a (all values
are in milliseconds). Thus, the response time of graph G1 will be
rG1 = O4 + r4 = 210, which is greater than DG1 = 200, hence the
system is not schedulable.

sOut
TTP max

m∀
Sm Im+()=

Figure 8.3: Response Time Analysis Example

GSTDMAmTDMAmTDMA
m

m
TTP
mm

TTP
mmm

m
N
mmm

mmm
CAN
m

m
CAN
mm

CAN
mmm

m
CAN
mm

CAN
mmm

OTOTBT
T
s

BwCwJr

CwJr
C

T
OJw

BwCwJr
BwCwJr

BwCwJr
C

T
OJw

BwCwJr

+−=







+=++=

++= 









 −+
+=++=

=++=
=++=








 −+
+=++=

mod,,

,
,

,
,

33

3

333333

3

2

333

1212

222222

111111

'''''''

3
,

333333

3
3,232

222222

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

247

8.3 Scheduling and Optimization Strategy
Once we have a technique to determine if a system is schedula-
ble, we can concentrate on optimizing the total queue sizes. Our
problem is to synthesize a system configuration ψ such that the
application is schedulable, i.e., the condition1

rGj
 ≤ DGj, ∀ Gj ∈ Γi, (8.8)

holds, and the total queue size stotal is minimized2:

. (8.9)

In the next section, we propose a resource optimization strat-
egy based on a hill-climb heuristic that uses an intelligent set of
initial solutions in order to efficiently explore the design space.

8.3.1 SCHEDULING AND BUFFER OPTIMIZATION HEURISTIC

The basic idea of our buffer optimization heuristic is to find, as a
first step, a solution with the smallest possible response times,
without considering the buffer sizes, in the hope of finding a
schedulable system. This is achieved through the
OptimizeSchedule function, outlined in Figure 8.4. Then, a hill-
climbing heuristic [Ree93] iteratively performs moves intended
to minimize the total buffer size while keeping the resulted sys-
tem schedulable.

1. The worst-case response time of a process graph Gi is calculated based
on its sink node as rGi

 = Osink + rsink. If local deadlines are imposed,
they will also have to be tested in the schedulability condition.

2. On the TTC, the synchronization between processes and the TDMA bus
configuration is solved through the proper synthesis of schedule tables,
thus no output queues are needed. Input buffers on both TTC and ETC
nodes are local to processes. There is one buffer per input message and
each buffer can store one message instance (see explanation to
Figure 3.8 on page 63).

stotal sOut
CAN

sOut
TTP

sOut
Ni

Ni ETC∈∀
∑+ +=

CHAPTER 8

248

The OptimizeSchedule function is a greedy approach which
determines an ordering of the slots and their lengths, as well as
priorities of messages and processes in the ETC, such that the
degree of schedulability δΓ (see Section 6.6.1) of the application
is maximized.

As an initial TTC bus configuration β, OptimizeSchedule assigns
in order nodes to the slots and fixes the slot length to the
minimal allowed value, which is equal to the length of the
largest message generated by a process assigned to Ni, Si = <Ni,

sizesmallest> (line 5 in Figure 8.4). Then, the algorithm starts with
the first slot (line 8) and tries to find the node which, when
transmitting in this slot, will maximize the degree of
schedulability δΓ (lines 9–37).

Simultaneously with searching for the right node to be
assigned to the slot, the algorithm looks for the optimal slot
length (lines 14–32). Once a node is selected for the first slot and
a slot length fixed (Si = Sbest, line 36), the algorithm continues
with the next slots, trying to assign nodes (and to fix slot
lengths) from those nodes which have not yet been assigned.

When calculating the length of a certain slot we consider the
feedback from the MultiClusterScheduling algorithm which recom-
mends slot sizes to be tried out. Before starting the actual opti-
mization process for the bus access scheme, a scheduling of the
initial solution is performed which generates the recommended
slot lengths. We refer the reader to Section 4.4.1 for details con-
cerning the generation of the recommended slot lengths.

In the OptimizeSchedule function the degree of schedulability δΓ
is calculated based on the response times produced by the
MultiClusterScheduling algorithm (line 20). For the priorities used
in the response time calculation we use the “heuristic optimized
priority assignment” (HOPA) approach (line 16) from [Gut95],
where priorities for processes and messages in a distributed
real-time system are determined, using knowledge of the factors
that influence the timing behavior, such that the degree of
schedulability is improved.

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

249

Figure 8.4: The OptimizeSchedule Algorithm

OptimizeSchedule(Γ)
1 -- given an application Γ produces the configuration ψ = <φ β π>
2 -- leading to the smallest δΓ
3

4 -- start by determining an initial TTC bus configuration β
5 for each slot Si ∈ β do Si = <Ni, sizesmallest> end for
6

7 -- find the best allocation of slots, the TDMA slot sequence
8 for each slot Si ∈ β do
9 for each node Nj ∈TTC do
10 -- allocate Nj tentatively to Si, Ni gets slot Sj
11 Si = <Nj, sizeSj>
12 Sj = <Ni, sizeSi>
13 -- determine best size for slot Si
14 for each slot size ∈ recomended_lengths(Si) do
15 -- calculate the priorities according to HOPA heuristic
16 π = HOPA
17 -- determine the offsets φ,
18 -- thus obtaining a complete system configuration ψ
19 Si = <Nj, size>
20 φ = MultiClusterScheduling(Γ, β π)
21 ψcurrent = <φ β π>
22 -- remember the best configuration so far,
23 -- add it to the seed configurations
24 if δΓ(ψcurrent) is best so far then
25 ψbest = ψcurrent
26 Sbest = Si;
27 add ψbest to seed_solutions
28 end if
29 determine stotal for ψcurrent
30 if stotal is best so far and Γ is schedulable
31 then add ψcurrent to seed_solutions end if
32 end for
33 end for
34 -- make binding permanent, use the Sbest corresponding to ψbest
35 if a Sbest exists
36 then Si = Sbest end if
37 end for
38

39 return ψbest, δΓ(ψbest), seed_solutions
end OptimizeSchedule

CHAPTER 8

250

The OptimizeSchedule function also records the best solutions in
terms of δΓ and stotal in the seed_solutions list in order to be used
as the starting point for the second step of our OptimizeResources

heuristic.
In the first step of our buffer size optimization heuristic

OptimizeResources, outlined in Figure 8.5, we have tried to obtain
a bus configuration that improves the degree of schedulability of
the application. Once a schedulable system is obtained, our goal
in the second step is to minimize the buffer space. Our design
space exploration in the second step of OptimizeResources (lines

Figure 8.5: The OptimizeResources Algorithm

OptimizeResources(Γ)
1

2 -- Step 1: try to find a schedulable system
3 seed_solutions = OptimizeSchedule(Γ)
4 -- if no schedulable configuration has been found,
5 -- modify mapping and/or architecture
6 if Γ is not schedulable for ψbest then
7 modify mapping
8 go to Step 1
9 end if
10

11

12 -- Step 2: try to reduce the resource need, minimize stotal
13 for each ψ in seed_solutions do
14 repeat
15 -- find moves with highest potential to minimize stotal
16 move_set = GenerateNeighbors(ψ)
17 -- select move which minimizes stotal
18 -- and does not result in an un-schedulable system
19 move = SelectMove(move_set)
20 Perform(move)
21 until stotal has not changed or limit reached
22 end for
23

24 return system configuration ψ, queue sizes
end OptimizeResources

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

251

12–22) is based on successive design transformations (generat-
ing the neighbors of a solution) called moves. For our heuristics,
we consider the following types of moves:

 • moving a process or a message belonging to the TTC inside its
[ASAP, ALAP] interval calculated based on the current values
for the offsets and response times;

 • swapping the priorities of two messages transmitted on the
ETC, or of two processes mapped on the ETC;

 • increasing or decreasing the size of a TDMA slot with a cer-
tain value;

 • swapping two slots inside a TDMA round.
The second step of the OptimizeResources heuristic starts from

the seed solutions (line 13) produced in the previous step, and
iteratively preforms moves in order to reduce the total buffer
size, stotal (Equation 8.9). The heuristic tries to improve on the
total queue sizes, without producing un-schedulable systems.
The neighbors of the current solution are generated in the
GenerateNeighbours function (line 16), and the move with the
smallest stotal is selected using the SelectMove function (line 19).
Finally, the move is performed, and the loop reiterates. The
iterative process ends when there is no improvement achieved
on stotal, or a limit imposed on the number of iterations has been
reached (line 21).

The general limitation of a hill-climbing heuristic is that it
can get stuck into a local optimum. In order to improve the
chances to find good values for stotal, the algorithm has to be exe-
cuted several times, starting with a different initial solution.
The intelligence of our OptimizeResources heuristic lies in the
selection of the initial solutions, recorded in the seed_solutions

list. The list is generated by the OptimizeSchedule function which
records the best solutions in terms of δΓ and stotal.

Seeding the hill climbing heuristic with several solutions of
small stotal will guarantee that the local optima are quickly
found. However, during our experiments, we have observed that

CHAPTER 8

252

another good set of seed solutions are those that have high
degree of schedulability δΓ. Starting from a highly schedulable
system will permit more iterations until the system degrades to
an un-schedulable configuration, thus the exploration of the
design space is more efficient.

8.4 Experimental Results
For evaluation of our algorithms we first used applications gen-
erated for experimental purpose. We considered two-cluster
architectures consisting of 2, 4, 6, 8 and 10 nodes, half on the TTC

and the other half on the ETC, interconnected by a gateway.
Forty processes were assigned to each node, resulting in applica-
tions of 80, 160, 240, 320 and 400 processes. Message sizes were
randomly chosen between 8 and 32 bytes. Thirty examples were
generated for each application dimension, thus a total of 150
applications were used for experimental evaluation. Worst-case
execution times and message lengths were assigned randomly
using both uniform and exponential distribution. All experi-
ments were run on a SUN Ultra 10.

In order to provide a basis for the evaluation of our heuristics
we have developed two simulated annealing (SA) based algo-
rithms (see Appendix A). Both are based on the moves presented
in the previous section. The first one, named SA Schedule (SAS),
was set to preform moves such that δΓ is minimized. The second
one, SA Resources (SAR), uses stotal as the cost function to be min-
imized. Very long and expensive runs have been performed with
each of the SA algorithms, and the best ever solution produced
has been considered as close to the optimum value.

8.4.1 SCHEDULING AND BUS ACCESS OPTIMIZATION HEURISTICS

The first experimental result concerns the ability of our heuris-
tics to produce schedulable solutions. We have compared the
degree of schedulability δΓ obtained from our OptimizeSchedule

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

253

(OS) heuristic (Figure 8.4) with the near-optimal values obtained
by SAS. Figure 8.6 presents the average percentage deviation of
the degree of schedulability produced by OS from the near-opti-
mal values obtained with SAS. Together with OS, a straightfor-
ward approach (SF) is presented. For SF we considered a TTC bus
configuration consisting of a straightforward ascending order of
allocation of the nodes to the TDMA slots; the slot lengths were
selected to accommodate the largest message sent by the respec-
tive node, and the scheduling has been performed by the
MultiClusterScheduling algorithm in Figure 8.2.

Figure 8.6 shows that when considering the optimization of
the access to the communication channel, and of priorities, the
degree of schedulability improves dramatically compared to the
straightforward approach. The greedy heuristic OptimizeSchedule

performs well for all the dimensions, having run-times which
are more than two orders of magnitude smaller than with SAS.

Figure 8.6: Comparison of the Scheduling
Optimization Heuristics

Number of processes

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

SF
OS
SAS

80 160 240 320 400
0

20

40

60

80

100

120

CHAPTER 8

254

In the figure, only the examples where all the algorithms have
obtained schedulable systems were presented. The SF approach
failed to find a schedulable system in 26 out of the total 150
applications.

8.4.2 BUFFER OPTIMIZATION HEURISTIC

Next, we are interested to evaluate the heuristics for minimiz-
ing the buffer sizes needed to run a schedulable application.
Thus, we compare the total buffer need stotal obtained by the
OptimizeResources (OR) function with the near-optimal values
obtained when using simulated annealing, this time with the
cost function stotal. To find out how relevant the buffer optimiza-
tion problem is, we have compared these results with the stotal

obtained by the OS approach, which is interested only to obtain a
schedulable system, without any other concern. As shown in
Figure 8.7a, OR is able to find schedulable systems with a buffer
need half of that needed by the solutions produced with OS. The
quality of the solutions obtained by OR is also comparable with
the one obtained with simulated annealing (SAR).

Another important aspect of our experiments was to deter-
mine the difficulty of resource minimization as the number of
messages exchanged over the gateway increases. For this, we
have generated applications of 160 processes with 10, 20, 30, 40,
and 50 messages exchanged between the TTC and ETC clusters.
Thirty applications were generated for each number of mes-
sages. Figure 8.7b shows the average percentage deviation of
the buffer sizes obtained with OR and OS from the near-optimal
results obtained by SAR. As the number of inter-cluster messages
increases, the problem becomes more complex. The OS approach
degrades very fast, in terms of buffer sizes, while OR is able to
find good quality results even for intense inter-cluster traffic.

When deciding on which heuristic to use for design space
exploration or system synthesis, an important issue is the execu-
tion time. In average, our optimization heuristics needed a cou-

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

255

Number of messages

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

OS
OR
SAR

10 20 30 40 50
0

10

20

30

40

50

Figure 8.7: Comparison of the Buffer Size
Minimization Heuristics

Number of processes

A
ve

ra
ge

 t
ot

al
 b

u
ff

er
 s

iz
e

s t
ot

al

OS
OR
SAR

80 160 240 320 400

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

0k

a) Bounds on total buffer size obtained
with OS, OR, SAS

b) Percentage deviations for
OS, OR from SAR

CHAPTER 8

256

ple of minutes to produce results, while the simulated annealing
approaches (SAS and SAR) had an execution time of up to three
hours.

8.4.3 THE VEHICLE CRUISE CONTROLLER

Finally, we considered a real-life example implementing a vehi-
cle cruise controller introduced in Section 2.3.3:

 • The conditional process graph that models the cruise control-
ler has 32 processes, and is presented in Figure 2.9 on
page 42,

 • and it was mapped on an architecture consisting of a TTC and
an ETC, each with 2 nodes, interconnected by a gateway, as in
Figure 2.7b on page 40.

 • The software architecture for multi-cluster systems, used by
the CC, is presented in Section 3.5.

 • We considered one mode of operation with a deadline of 250
ms.

The straightforward approach SF produced an end-to-end
response time of 320 ms, greater than the deadline, while both
the OS and SAS heuristics produced a schedulable system with a
worst-case response time of 185 ms. The total buffer need of the
solution determined by OS was 1020 bytes. After optimization
with OR a still schedulable solution with a buffer need reduced
by 24% has been generated, which is only 6% worse than the
solution produced with SAR.

As a conclusion, the optimization heuristics proposed are able
to increase the schedulability of the applications and reduce the
buffer size needed to run a schedulable application.

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

257

In this chapter, the main contribution was the development of
a schedulability analysis for multi-cluster systems. However, in
the case of both TTP and CAN protocols, several messages share
one frame, in the hope to utilize resources more efficiently.
Therefore, in the next chapter we propose optimization heuris-
tics for determining frame packing configurations that are able
to reduce the cost of the resources needed to run a schedulable
application.

259

Chapter 9
Schedulability-Driven

Frame Packing for
Multi-Cluster Systems

THE PREVIOUS CHAPTERS have presented analysis methods
for communication-intensive heterogeneous real-time systems,
taking into account the details of the communication protocols,
in our case CAN and TTP.

We have, however, not addressed the issue of frame packing,
which is of utmost importance in cost-sensitive embedded sys-
tems where resources, such as communication bandwidth, have
to be fully utilized [Kop95], [San00], [Raj98]. In both TTP and
CAN protocols messages are not sent independently, but several
messages having similar timing properties are usually packed
into frames. In many application areas like, for example, auto-
motive electronics, messages range from one single bit (e.g., the
state of a device) to a couple of bytes (e.g., vehicle speed, etc.).
Transmitting such small messages one per frame would create a
high communication overhead, which can cause long delays
leading to an unschedulable system. For example, 48 bits have

CHAPTER 9

260

to be transmitted on CAN for delivering one single bit of applica-
tion data. Moreover, a given frame configuration defines the
exact behavior of a node on the network, which is very important
when integrating nodes from different suppliers.

The issue of frame packing (sometimes referred to as frame
compiling) has been previously addressed separately for the CAN

and the TTP. In [San00], [Raj98] CAN frames are created based on
the properties of the messages, while in [Kop95] a “cluster com-
piler” is used to derive the frames for a TT system which uses TTP

as the communication protocol. However, researchers have not
addressed frame packing on multi-cluster systems implemented
using both ET and TT clusters, where the interaction between the
ET and TT processes of a hard real-time application has to be
very carefully considered in order to guarantee the timing con-
straints. As our multi-cluster scheduling strategy in Section 8.2
shows, the issue of frame packing cannot be addressed sepa-
rately for each type of cluster, since the inter-cluster communi-
cation creates a circular dependency.

Therefore, in this chapter, we concentrate on the issue of pack-
ing messages into frames, for multi-cluster distributed embed-
ded systems consisting of time-triggered and event-triggered
clusters, interconnected via gateways. We are interested to
obtain that frame configuration which would produce a schedu-
lable system. We have updated our schedulability analysis pre-
sented in Section 8.2 to account for the frame packing, and we
have proposed two optimization heuristics that use the schedu-
lability analysis as a driver towards a frame configuration that
leads to a schedulable system.

The chapter is organized in three sections. The next section
presents the exact formulation of the problem that we are
addressing in this chapter. Section 9.2 updates the schedulabil-
ity analysis for multi-clusters developed in the previous chapter,
and uses it to drive the optimization heuristics used for frame
generation. The last section presents the experimental results.

SCHEDULABILITY-DRIVEN FRAME PACKING FOR MULTI-CLUSTER SYSTEMS

261

9.1 Problem Formulation
As input to our problem we have an application Γ given as a set
of conditional process graphs mapped on an architecture consist-
ing of a TTC and an ETC interconnected through a gateway.

As part of our frame packing approach, we are interested to
generate all the MEDLs on the TTC (i.e., the TT frames and the
sequence of the TDMA slots), as well as the ET frames and their
priorities on the ETC such that the global system is schedulable.

More formally, we are interested to find a mapping of mes-
sages to frames (a frame packing configuration) denoted by a 4-
tuple ψ=<α, π, β σ> such that the application Γ is schedulable.
Once a schedulable system is found, we are interested to further
improve the degree of schedulability (defined in Section 6.6.1),
so the application can potentially be implemented on a cheaper
hardware architecture (with slower buses and processors).

Determining a frame configuration ψ means deciding on:

 • The mapping of application messages transmitted on the ETC

to frames (the set of ETC frames α), and their relative priori-
ties π. Note that the ETC frames α have to include messages
transmitted from an ETC node to a TTC node, messages trans-
mitted inside the ETC cluster, and those messages transmit-
ted from the TTC to the ETC.

 • The mapping of messages transmitted on the TTC to frames,
denoted by the set of TTC frames β and the sequence σ of slots
in a TDMA round. The slot sizes are determined based on the
set β, and are calculated such that they can accommodate the
largest frame sent in that particular slot. We consider that
messages transmitted from the ETC to the TTC are not stati-
cally allocated to frames. Rather, we will dynamically pack
messages originating from the ETC into the “gateway frame,”
for which we have to decide the data field length.

Example 9.1: Let us consider the example in Figure 9.1,
where we have the process graph G in Figure 3.8a on page 63

CHAPTER 9

262

mapped on the two-cluster system as indicated in
Figure 3.8b. In the system configuration of Figure 9.1a we
consider that, on the TTP bus, the node N1 transmits in the
first slot S1 of the TDMA round, while the gateway transmits
in the second slot SG. The priorities of processes and mes-
sages in the ETC are illustrated in the figure.

In such a setting, G will miss its deadline, which was set at
450 ms. Changing the frame configuration as in Figure 9.1b,
so that messages m1 and m2 are packed into frame f1 and slot
SG of the gateway comes first, processes P2 and P3 will
receive m1 and m2 sooner and thus reduce the response time
to 466, which is still larger than the deadline. In Figure 9.1c,
we also pack m3 and m4 into f2. In such a situation, the send-
ing of m3 will have to be delayed until m4 is queued by P2.
Nevertheless, the response time of the application is further
reduced to 426, which means that the deadline is met, thus
the system is schedulable.

However, packing more messages will not necessarily
reduce the response times further, as it might increase too
much the response times of messages that have to wait for
the frame to be assembled, like is the case with message m3,
in Figure 9.1c, which has to wait until m4 is produced. We
are interested to find that frame packing which would lead to
a schedulable system.

9.2 Frame Packing Strategy
We have updated the schedulability analysis for an ETC cluster,
presented in Section 8.2, to consider frames. We consider that the
response time of a message m is equal to the response time of the
frame f in which message m is transmitted. The response time of
a frame f is calculated similar to a the worst-case response time
for a message in Section 8.2, with the following exceptions:

SCHEDULABILITY-DRIVEN FRAME PACKING FOR MULTI-CLUSTER SYSTEMS

263

F
ig

u
re

 9
.1

:
F

ra
m

e
P

ac
ki

n
g

E
xa

m
pl

es
 f

or
 M

u
lt

i-
C

lu
st

er
 S

ys
te

m
s

P
1(

C
1=

30
)

P
2(

C
2=

30
)

P
3(

C
3=

30
)

m
1

m
2(

C
m

1=
C

m
2=

36
)

m
3

S G
=

36
S 1

=
36 R

ou
nd

=
72

O
2=

10
8

O
3=

18
0

J 2
=

r m
1=

11
6

J 3
=

r m
2=

61

I 2
=

30

r 2
=

17
6

r 3
=

91

r G
=5

34

T
G
=

54
0

D
G
=

45
0

D
ea

dl
in

e
m

is
se

d!

S G
S 1

T

O
4=

18
0

T
(C

T
=

6)

N
1

N
G

N
2

T
T

P
 b

us

C
A

N
 b

us

r m
1=

C
m

1+
B

m
1+

w
m

1 =
55

+
55

+
0=

11
0

C
A

N

T
T

m
1

m
2(

C
m

1=
C

m
2=

55
)

m
4

N
1

N
G

N
2

T
T

P
 b

us

C
A

N
 b

us

N
1

N
G

N
2

T
T

P
 b

us

C
A

N
 b

us

m
3

m
4

P
4(

C
4=

30
)

D
ea

dl
in

e
m

is
se

d!

P
1

m
3

m
4

r G
=4

26
D

ea
dl

in
e

m
et

!

r G
=4

66 m
1

m
2

m
1

m
2

S 1
=

44
S G

=
36

m
3

m
4

T

T
T

T

T

P
1

P
2

P
3

P
4

P
2

P
3

P
4

S 1
=

44
S G

=
44

S G
S 1

S G
S 1

m
1

m
2

m
1

m
2

m
3

m
4

m
3

m
4

f 1

f 1
f 2

hi
gh

m
1

m
3

m
4

m
2

P
3

P
2

lo
w

Pr
io

ri
ty

hi
gh

m
4

m
3

f 1

P
3

P
2

lo
w

P
ri

or
ity

hi
gh

f 2 f 1
P

3
P

2
lo

w

Pr
io

ri
ty

a)
 M

es
sa

ge
s

no
t p

ac
ke

d,
 d

ea
dl

in
e

m
is

se
d

b)
 m

1
an

d
m

2
pa

ck
ed

 in
 f 1

, m
3

an
d

m
4

no
t p

ac
ke

d,
 d

ea
dl

in
e

m
is

se
d

c)
 m

1
an

d
m

2
pa

ck
ed

 in
 f 1

, m
3

an
d

m
4

pa
ck

ed
 in

 f 2
, d

ea
dl

in
e

m
et

D
at

a
fi

el
d

O
th

er
 f

ra
m

e
fi

el
ds

R
un

ni
ng

 p
ro

ce
ss

In
te

rf
er

en
ce

Ji
tte

r

CHAPTER 9

264

 • The size of the frame is calculated taking into account the
exact frame configuration for TTP and CAN (see figures 3.3
and 3.4 on page 52 and page 53, respectively) and the size of
the messages packed into the frame.

 • The jitter of a frame f is, in the worst case, equal to the larg-
est worst case response time rS(m) of a sender process PS(m)

which sends message m packed into frame f:

. (9.1)

For the scheduling of a multi-cluster system we use the same
algorithm as in Figure 8.2. Once we have a technique to deter-
mine if a system is schedulable, we can concentrate on optimiz-
ing the packing of messages to frames.

Such an optimization problem is NP complete [San00], thus
obtaining the optimal solution is not feasible. We propose two
frame packing optimization strategies, one based on a simulated
annealing approach, while the other is based on a greedy heuris-
tic that uses intelligently the problem-specific knowledge in
order to explore the design space.

In order to drive our optimization algorithms towards schedu-
lable solutions, we characterize a given frame packing configu-
ration using the degree of schedulability of the application, as
presented in Section 6.6.1.

9.2.1 FRAME PACKING WITH SIMULATED ANNEALING

The first algorithm we have developed is based on a simulated
annealing (SA) strategy, see Appendix A. As discussed before, an
essential component of an SA algorithm is the generation of a
new solution x’ starting from the current one xnow (Figure A.1 in
Appendix A). The neighbors of the current solution xnow are
obtained by performing transformations (called moves) on the
current frame configuration ψ. We consider the following moves:

Jf
max
m∀ f∈

rS m()()=

SCHEDULABILITY-DRIVEN FRAME PACKING FOR MULTI-CLUSTER SYSTEMS

265

 • moving a message m from a frame f1 to another frame f2 (or
moving m into a separate single-message frame);

 • swapping the priorities of two frames in α;
 • swapping two slots in the sequence σ of slots in a TDMA

round.

9.2.2 FRAME PACKING GREEDY HEURISTIC

The OptimizeFramePacking greedy heuristic (Figure 9.2) con-
structs the solution by progressively selecting the best candidate
in terms of degree of schedulability.

We start by observing that all activities taking place in a
multi-cluster system are ordered in time using the offset infor-
mation, determined in the StaticScheduling function (see
Section 8.2) based on the response times known so far and the
application structure (i.e., the dependencies in the process
graphs). Thus, our greedy heuristic outlined in Figure 9.2, starts
with building two lists of messages ordered according to the
ascending value of their offsets, one for the TTC, messagesβ, and
the other for ETC, messagesα. Our heuristic is to consider for
packing in the same frame messages which are adjacent in the
ordered lists.

Example 9.2: For example, let us consider that we have
three messages, m1 of 1 byte, m2 of 2 bytes and m3 of 3 bytes,
and that messages are ordered as m3, m1, m2 based on the
offset information. Also, assume that our heuristic has sug-
gested two frames, frame f1 with a data field of 4 bytes, and f2
with a data field of 2 bytes.

The PackMessages function will start with m3 and pack it in
frame f1. It continues with m2, which is also packed into f1,
since there is space left for it. Finally, m3 is packed in f2,
since there is no space left for it in f1.

CHAPTER 9

266

Figure 9.2: The OptimizeFramePacking Algorithm

OptimizeFramePacking(Γ)
1 -- given an application Γ, find out if it is schedulable and produce the
2 -- configuration ψ = <α, π, β, σ> leading to the smallest δΓ
3 -- build the message lists ordered ascending on their offsets
4 messagesβ = ordered list of nβ messages on the TTC
5 messagesα = ordered list of nα messages on the ETC
6 -- build an initial frame configuration ψ = <α, π, β, σ>
7 β = messagesβ; α = messagesα -- initially, each frame carries one message
8 -- determine an initial TDMA slot sequence σ
9 for each slot Si ∈σ do Si = Ni; sizeSi

= sizelargest message end for
10 πinitial = HOPA -- calculate the priorities π according to the HOPA heuristic
11 -- find the best allocation of slots, the TDMA slot sequence σcurrent
12 for each slot Si ∈ σcurrent do
13 for each node Nj ∈TTC do
14 σcurrent.Si = Nj; σcurrent.Sj = Ni -- allocate Nj tentatively to Si, Ni gets slot Sj
15 -- determine the best frame packing configuration β for the TTC
16 for each βcurrent having a number of 1 to nβ frames do
17 for each frame fi ∈ βcurrent do
18 -- determine the best frame size for fi
19 for each frame size Sf ∈ RecomendedSizes(messagesβ) do
20 βcurrent.fi.S = Sf
21 -- determine the best frame packing configuration α for the ETC
22 for each αcurrent having a number of 1 to nα frames do
23 for each frame fj ∈ αcurrent do
24 -- determine the best frame size for fj
25 for each frame size Sf ∈ RecomendedSizes(messagesα) do
26 αcurrent.fj.S = Sf; ψcurrent = <αcurrent, πinitial, βcurrent, σcurrent>
27 PackMessages(ψcurrent, messagesβ ∪ messagesα)
28 δΓ = MultiClusterScheduling(Γ, ψcurrent)
29 -- remember the best configuration so far
30 if δΓ(ψcurrent) is best so far thenψbest = ψcurrent end if
31 end for
32 end for
33 if ψbest exists
34 then αcurrent.fj.S = size of frame fj in the configuration ψbest end if
35 end for
36 if ψbest exists then αcurrent = frame set α in the configuration ψbest end if
37 end for
38 end for
39 if ψbest exists then βcurrent.fi.S = size of frame fi in the configuration ψbest end if
40 end for; if ψbest exists then βcurrent = frame set β in the configuration ψbest end if
41 end for
42 if ψbest exists
43 then σcurrent.Si = node in the slot sequence σ in the configuration ψbest end if
44 end for
45 return SchedulabilityTest(Γ, ψbest), ψbest
end OptimizeFramePacking

SCHEDULABILITY-DRIVEN FRAME PACKING FOR MULTI-CLUSTER SYSTEMS

267

The OptimizeFramePacking tries to determine, using the for-each

loops in Figure 9.2, the allocation of frames, i.e., the number of
frames and their sizes, for each cluster. The actual mapping of
messages to frames will be performed by the PackMessages func-
tion as described previously.

As an initial TDMA slot sequence σinitial on the TTC,
OptimizeFramePacking assigns nodes to the slots and fixes the slot
length to the minimal allowed value, which is equal to the length
of the largest message generated by a process assigned to Ni,
sizeSi

 = sizelargest_message (line 9 in Figure 9.2).
Then, the algorithm looks, in the innermost for-each loops, for

the optimal frame configuration α (lines 21–35). This means
deciding on how many frames to include in α (line 22), and which
are the best sizes for them (lines 24–31). In α there can be any
number of frames, from one single frame to nα frames (in which
case each frame carries one single message). Hence, several
numbers of frames are tried, each tested for a recommended size
Sf to see if it improves the current configuration. The
RecomendedSizes(messagesα) list is built recognizing that only
messages adjacent in the messagesα list will be packed into the
same frame. Sizes of frames are determined as a sum resulted
from adding the sizes of combinations of adjacent messages, not
exceeding 8 bytes.

Example 9.3: For the previous example, with m1, m2 and
m3, of 1, 2 and 3 bytes, respectively, the frame sizes recom-
mended will be of 1, 2, 3, 5, and 6 bytes. A size of 4 bytes will
not be recommended since there are no adjacent messages
that can be summed together to obtain 4 bytes of data.

Once a configuration αbest for the ETC, minimizing δΓ, has been
determined (considering for π, β, σ the initial values determined
at the beginning of the algorithm), the algorithm looks for the
frame configuration β which will further improve δΓ (the loop
consisting of lines 15 to 41). The degree of schedulability δΓ (the

CHAPTER 9

268

smaller the value, the more schedulable the system) is
calculated based on the response times produced by the
MultiClusterScheduling algorithm (see Section 8.2) in line 28. After
a βbest has been decided, the algorithm looks for a slot sequence
σ, starting with the first slot and tries to find the node which,
when transmitting in this slot, will reduce δΓ (loop 11–44). The
algorithm continues in this fashion, recording the best ever ψbest

configurations obtained in terms of δΓ, and thus, the best
solution ever is reported when the algorithm finishes. In the
inner loops of the heuristic we will not change the frame
priorities πinitial set at the beginning of the algorithm, on line 10.

9.3 Experimental Results
For the evaluation of our algorithms we first used process appli-
cations generated for experimental purpose. Similar to the
experimental setup in Chapter 8, we considered two-cluster
architectures consisting of 2, 4, 6, 8 and 10 nodes, half on the TTC

and the other half on the ETC, interconnected by a gateway.
Forty processes were assigned to each node, resulting in applica-
tions of 80, 160, 240, 320 and 400 processes. Message sizes were
randomly chosen between 1 bit and 2 bytes. Thirty examples
were generated for each application dimension, thus a total of
150 applications were used for experimental evaluation. Worst-
case execution times and message lengths were assigned ran-
domly using both uniform and exponential distribution. For the
communication channels we considered a transmission speed of
256 Kbps and a length below 20 meters. All experiments were
run on a SUN Ultra 10.

The first result concerns the ability of our heuristics to pro-
duce schedulable solutions. We have compared the degree of
schedulability δΓ obtained from our OptimizeFramePacking (OFP)
heuristic (Figure 9.2) with the near-optimal values obtained by
the simulated annealing algorithm SA. Obtaining solutions that

SCHEDULABILITY-DRIVEN FRAME PACKING FOR MULTI-CLUSTER SYSTEMS

269

0
10
20
30
40
50
60
70
80
90

100

80 160 240 320 400

SF
OFP
SA

Number of processes

A
ve

ra
ge

 p
er

ce
nt

ag
e

de
vi

at
io

n
[%

]

a) Average percentage deviation from SA

Number of processes

A
ve

ra
ge

 e
xe

cu
ti

on
 t

im
es

 (
se

co
n

ds
)

b) Average execution time

SF
OFP
SA

0

3600

7200

80 160 240 320 400

5h

6h

7h

Figure 9.3: Evaluation of the
Frame Packing Heuristics

CHAPTER 9

270

have a higher degree of schedulability means obtaining tighter
response times, increasing the chances of meeting the deadlines.

Figure 9.3a presents the average percentage deviation of the
degree of schedulability produced by OFP from the near-optimal
values obtained with SA. Together with OFP, a straightforward
approach (SF) is presented. The SF approach does not consider
frame packing, and thus each message is transmitted indepen-
dently in a frame. Moreover, for SF we considered a TTC bus con-
figuration consisting of a straightforward ascending order of
allocation of the nodes to the TDMA slots; the slot lengths were
selected to accommodate the largest message frame sent by the
respective node, and the scheduling has been performed by the
MultiClusterScheduling algorithm in Figure 8.2.

Figure 9.3a shows that when packing messages to frames, the
degree of schedulability improves dramatically compared to the
straightforward approach. The greedy heuristic OptimizeFrame-

Packing performs well for all the graph dimensions, having run-
times which are more than two orders of magnitude smaller
than with SA.

When deciding on which heuristic to use for design space
exploration or system synthesis, an important issue is the execu-
tion time. In average, our optimization heuristics needed a cou-
ple of minutes to produce results, while the simulated annealing
approach had an execution time of up to 6 hours (see
Figure 9.3b).

9.3.1 THE VEHICLE CRUISE CONTROLLER

Finally, we considered the cruise controller example presented
in Section 2.3.3:

 • The model for the cruise controller is presented in Figure 2.9
on page 42.

 • The architecture, consisting of a TTC and an ETC, each with 2
nodes, interconnected by the CEM node, is depicted in
Figure 2.7b on page 40.

SCHEDULABILITY-DRIVEN FRAME PACKING FOR MULTI-CLUSTER SYSTEMS

271

 • The software architecture for multi-cluster systems, used by
the CC, is presented in Section 3.5.

 • We considered one mode of operation with a deadline of 250
ms.

In this context, the straightforward approach SF produced an
end-to-end response time of 320 ms, greater than the deadline,
while both the OFP and SA heuristics produced a schedulable sys-
tem with a worst-case response time of 172 ms.

This shows that the optimization heuristic proposed, driven
by our schedulability analysis, is able to identify that frame
packing configuration which increases the schedulability degree
of an application, allowing the developers to reduce the imple-
mentation cost of a system.

This thesis has presented analysis and synthesis methods for
communication-intensive heterogeneous real-time systems.
There are, however, several other interesting problems which
can be addressed once such analysis and synthesis techniques
are available. In the next chapter we outline a number of future
research ideas, following the conclusions of the thesis.

 PART V
Conclusion

275

Chapter 10
Conclusions and

Future Work

THIS CHAPTER PRESENTS the conclusions of the thesis and
points to future research directions. The conclusions, presented
in the next section, are organized according to the parts of the
thesis. Thus, Section 10.1.1 presents the conclusions for PART II
(Time-Driven Systems), Section 10.1.2 the conclusions for PART
III (Event-Driven Systems), and Section 10.1.3 presents the con-
clusions for PART IV (Multi-Cluster Systems). The last section
of this chapter presents the future work ideas.

10.1 Conclusions
In this thesis we have proposed analysis and synthesis methods
for a special class of embedded systems called communication-
intensive heterogeneous real-time systems. Such systems are
composed of heterogeneous interconnected networks, thus com-
munication has to be carefully considered during their design.

The analysis methods are based on an application model that
is able to capture both the flow of data and the flow of control,

CHAPTER 10

276

and determine if the timing requirements are fulfilled. The syn-
thesis techniques proposed are able to optimize the design
implementations such that not only the design constraints are
fulfilled, but the development and implementation costs are
reduced. An important part of the design optimization is the
synthesis of the communication infrastructure, which has a sig-
nificant impact on the overall system performance and cost.

The analysis and synthesis techniques proposed have been
thoroughly evaluated using a large number of synthetic applica-
tions, as well as a realistic case study consisting of a vehicle
cruise controller.

One of the main conclusions of the thesis is that in order to
provide accurate analysis and synthesis methods, we have to
take into account the exact details of the communication proto-
col. Moreover, the parameters of the communication protocol
have to be carefully determined in order to obtain an optimized
implementation. At the same time, the design tasks addressed
have to be considered within a realistic design methodology,
where designs evolve over time, rather than being built from
scratch.

10.1.1 TIME-DRIVEN SYSTEMS

In the second part of the thesis, we have first proposed an exten-
sion to a static scheduling algorithm for CPGs. We have shown
that the general scheduling algorithm for conditional process
graphs can be successfully applied if the strategy for message
scheduling is adapted to the requirements of the TTP protocol. At
the same time, the quality of the generated schedules has been
much improved by adjusting the priority function used by the
scheduling algorithm to the particular communication protocol.

However, not only should particularities of the underlying
architecture be considered during scheduling, but the parame-
ters of the communication protocol should also be adapted to fit
the particular embedded application. We have shown that

CONCLUSIONS AND FUTURE WORK

277

important performance gains can be obtained, without any addi-
tional cost, by optimizing the bus access scheme. The optimiza-
tion algorithm, which now implies both process scheduling and
optimization of the parameters related to the communication
protocol, generates an efficient bus access scheme as well as the
schedule tables for activation of processes and communications.

Using as a basis the timing analysis and communication syn-
thesis developed for time-driven systems, we have addressed the
mapping design task within an incremental design environ-
ment. The time-to-market of products can only be reduced
through substantial design reuse. This means that the design
has to start from an already existing system running certain
applications and the design problem is to implement new func-
tionality on this system. Our mapping and scheduling problem
has been considered within such an incremental design process.

As our experiments have shown, we are able to map and
schedule an application such that the existing applications are
disturbed very little, thus minimizing the re-implementation
and testing times, and that the resulted system can be struc-
tured in such a way, that new functionality, later to be added,
can be easily accommodated. The main driver behind our map-
ping and scheduling strategies are the design criteria and the
associated design metrics that are able to evaluate how well a
design alternative supports such an incremental design process.

10.1.2 EVENT-DRIVEN SYSTEMS

In the third part of the thesis, we have proposed schedulability
analyses for event-driven systems that use fixed priority pre-
emptive scheduling.

First, we have shown how the information related to the con-
ditions, captured by a conditional process graph, can be used to
reduce the pessimism of the analysis. We have then extended
the analysis to take into account the details of the communica-
tion infrastructure, which in our case uses the time-triggered

CHAPTER 10

278

protocol. We have considered four different approaches to mes-
sage scheduling over TTP, which were compared based on the
issue of schedulability.

Using the developed analysis, we have presented optimization
strategies for the bus access scheme in order to fit the communi-
cation particularities of a certain application. We showed that by
optimizing the bus access scheme, significant improvements in
the degree of schedulability of a system can be produced. Our
optimization heuristics are able to efficiently produce good qual-
ity results.

The same problem of mapping and scheduling within an incre-
mental design environment, addressed in the second part for
time-driven systems, has been now treated in the context of
event-driven systems. The main difference from the time-driven
approach is in the formulation of the design criteria and design
metrics that capture how well a design alternative supports an
incremental design process. As the experiments have shown, the
design criteria proposed are able to drive the optimization pro-
cess towards solutions where it becomes easier to add new func-
tionality, while at the same time the modifications performed to
the existing applications are minimized.

10.1.3 MULTI-CLUSTER SYSTEMS

The second and third parts of the thesis have presented schedu-
lability analysis and optimization methods for time-driven and
event-driven systems, respectively. However, as we have dis-
cussed in Section 3.1, for certain applications, the two
approaches have to be used together. In this thesis, we have con-
sidered systems designed as interconnected clusters of proces-
sors, where each such cluster can be either TT or ET.

Hence, we have presented in the fourth part of the thesis an
approach to the schedulability analysis for the synthesis of
multi-cluster distributed embedded systems consisting of time-
triggered and event-triggered clusters, interconnected via gate-

CONCLUSIONS AND FUTURE WORK

279

ways. The main contribution was the development of a schedula-
bility analysis for such systems, including the determination of
the worst-case queuing delays at the gateway and of the bounds
on the buffer sizes needed for running a schedulable system.

Optimization heuristics for system synthesis have been pro-
posed, together with simulated annealing approaches tuned to
find near-optimal results. The first heuristic was concerned with
obtaining a schedulable system, by maximizing the degree of
schedulability. The second heuristic was aimed at producing
schedulable systems with a minimal buffer size need.

In both TTP and CAN protocols messages are not sent indepen-
dently, but several messages are usually packed into frames.
Throughout the thesis, we have not addressed the issue of frame
packing, which is of utmost importance in cost-sensitive embed-
ded systems where resources, such as communication band-
width, have to be fully utilized. In the second chapter of part
four, we have proposed two optimization heuristics for frame
configuration synthesis which are able to determine frame con-
figurations that lead to a schedulable system. We have shown
that by considering the frame packing problem, we are able to
synthesize schedulable hard-real time systems and to poten-
tially reduce the overall cost of the architecture.

10.2 Future Work
A large part of this thesis was dedicated to analysis methods
aimed at guaranteeing timing constraints.

Using these analysis methods we have shown how several
design optimization problems can be addressed: scheduling,
mapping, communication synthesis, etc. There are, however,
several other design optimization problems that can be
addressed once good analysis techniques are available:

 • It is possible to extend the analyses presented in the thesis
to handle not only timing constraints, but also to address the

CHAPTER 10

280

power consumption of a design alternative. The synthesis al-
gorithms would then produce implementations that reduce
the power consumption, guaranteeing, at the same time, the
timing constraints.

 • In this thesis we have assumed that the applications are
implemented using hard real-time systems. This means that
a deadline has to be met, otherwise a potentially cata-
strophic situation can develop. However, there are many
applications where soft real-time systems are more appropri-
ate. In this case, our analysis, which now uses worst-case
assumptions, has to be extended to handle variable execu-
tion times.

 • One particularly interesting problem is the problem of parti-
tioning an application into TT and ET processes, at the same
time with deciding the mapping of these processes across
multi-cluster systems. Such a tool would allow the designer
to perform more informed decisions about mapping, and
would lead to a better design space exploration at earlier
stages.

 • Moreover, during the mapping of processes to architecture
components, it can turn out that there are not enough
resources available in order to guarantee the constraints
imposed on the application. Such situations might include:
lack of enough memory, lack of enough computing power to
guarantee a certain imposed performance, etc. In these situ-
ations, several decisions have to be made related to architec-
ture selection: how much memory to add and where, which
processor should be replaced with a more powerful one, or if
a new processor should be added to the architecture, etc.

281

Appendix A

SIMULATED ANNEALING IS an optimization heuristic that
tries to find the global optimum by randomly selecting a new
solution from the neighbors of the current solution [Ree93].

The approach derives its name from the process of crystalliza-
tion of materials. If a material is heated past its melting point
and then cooled, the rate of cooling the material can influence its
structural properties: a too fast cooling introduces imperfec-
tions. This process is called annealing, hence the name simu-
lated annealing (SA). Researchers have suggested that this type
of simulation can be used to solve optimization problems.

The SA algorithm is a variant of the neighborhood search tech-
nique, where the local search space is explored by moving from
the current solution to a neighbor solution. In general, the new
solution is accepted if it is an improved one. However, in the case
of SA, a worse solution can also be accepted with a certain prob-
ability that depends on the deterioration of the cost function and
on a control parameter called temperature which is analog to the
temperature concept of the physical annealing process.

In Figure A.1 we give a short description of this algorithm.
The algorithm starts with constructing an initial solution. How
this initial solution is constructed depends on the particular

282

problem that has to be solved. In general, it is sufficient to gen-
erate an arbitrary valid solution.

An essential component of the algorithm is the generation of a
new solution x’ starting from the current one xnow (line 5 in the
algorithm). The generation of the neighbor solution x’ depends
on the details of the optimization problem and the internal rep-
resentation of a solution. In this thesis, the neighbor solutions x’
are generated through performing design transformations on
xnow. The design transformations applied depend on what parts
of a system we are interested to synthesize.

For the implementation of the simulated annealing algorithm,
the parameters TI (initial temperature), TL (temperature
length), ε (cooling ratio), and the stopping criterion have to be
determined. They define the so called cooling schedule and have
a decisive impact on the quality of the solutions and the CPU

time consumed. The temperature length TL determines how

SimulatedAnnealing
1 construct an initial solution xnow

2 temperature = initial temperature TI
3
4 repeat
5 for i = 1 to temperature length TL do
6 generate randomly a neighboring solution x’ of xnow

7 delta = CostFunction(x’) – CostFunction(xnow)
8 if delta < 0 then xnow = x’
9 else
10 generate q = random (0, 1)
11 if q < e–delta / temperature then xnow = x’ end if
12 end if
13 end for
14 temperature = ε * temperature
15 until stopping criterion is met
16
17 return solution corresponding to the best CostFunction
end SimulatedAnnealing

Figure A.1 The Simulated Annealing Strategy

283

many iterations the loop comprised of lines 5–14 will perform at
a certain temperature, and the cooling ratio ε will decide how
fast the temperature will drop, in each iteration of the 4–15
repeat loop, starting from the initial temperature TI.

In our experiments, we were interested to obtain values for TI,
TL and ε that will guarantee the finding of near-optimal solu-
tions in an acceptable time. In order to tune the optimization
parameters TI, TL, and ε we have first performed very long and
expensive runs on selected large examples and the best ever
solution, for each example, has been considered as the near-opti-
mum. Based on further experiments we have determined the
parameters of the SA algorithm, for different sizes of examples,
so that the optimization time is reduced as much as possible but
the near-optimal result is still produced. These parameters
(tuned to different values for each experimental setup) have
been then used for the large scale experiments presented in the
experimental sections of each chapter.

285

List of Notations

Application
Γi An application composed of several conditional

process graphs

δΓ Degree of schedulability of application Γ

RΓ Modification cost of application Γ

Ω Subset of applications

R(Ω) Modification cost of the applications in subset Ω

A(E, V) Dependency graph of applications; E is the set of
edges, whereas V is the set of nodes

eij An edge eij ∈ E denoting that application Γj

depends on application Γi

St Set of possible worst-case execution times char-
acterizing the execution time of processes belong-
ing to an application

fSt(t) The occurrence probability of a worst-case execu-
tion time t ∈ St

SU Set of possible worst-case utilizations character-
izing the processes of an application

fSU(U) The occurrence probability of a worst-case utili-
zation U ∈ SU

286

Sb Set of possible message sizes for messages in an
application

fSb(b) The occurrence probability of a message size
b ∈ Sb

Tmin Smallest expected period characterizing an
application

tneed Expected necessary processor time for an appli-
cation inside a period Tmin

bneed Expected necessary bus bandwidth for an appli-
cation inside a period Tmin

Conditional Process Graph
Gi Conditional process graph Gi(V, ES, EC)

V Set of nodes in the conditional process graph

ES Set of simple edges in the conditional process graph

ES Set of conditional edges in the conditional pro-
cess graph

E The set of all edges in the conditional process
graph; ES ∪ EC = E

eij Edge in the E set, from Pi to Pj indicating that
the output of Pi is the input of Pj

Gi Mapped conditional process graph

TGi
Period of the mapped conditional process graph Gi

DGi
End-to-end deadline on the mapped conditional
process graph Gi

τi Process graph without conditions

gi A trace through a conditional process graph for a
given combination of conditions

287

Process
Pi Process

M(Pi) Resource executing process Pi

XPi
Guard associated to process Pi

Ci Worst-case execution time of process Pi when
executing on the resource M(Pi)

Ui Utilization due to process Pi

Ti Period of process Pi

priorityPi
Priority of process Pi

Di Deadline of process Pi

ri Worst-case response time of process Pi

Ji Jitter of process Pi

Oij The relative offset of process Pi (or message mi)
to process Pj (or message mj)

hp(Pi) Set of processes having a higher priority than
priorityPi

lp(Pi) Set of processes having a lower priority than
priorityPi

Ii, wi The interference of on the execution of process Pi

due to processes having a higher priority than
priorityPi

Bi The blocking time experienced by process Pi due
to processes having a lower priority than
priorityPi

ASAP(Pi) The as-soon-as-possible start time of process Pi

ALAP(Pi) The as-late-as-possible start time of process Pi

q Number of level-i busy periods

288

Message
m Message

S(m) The sender process of message m

D(m) The destination process of message m

Sm Size of message m

Cm Worst-case transmission time of message m

Tm Period of process message m

prioritym Priority of message m

rm Worst-case response time of message m

Jm Jitter of message m

hp(m) Set of processes having a higher priority than
prioritym

lp(m) Set of processes having a lower priority than
prioritym

Im, wm The interference of on the worst-case queuing
time of message m due to messages having a
higher priority than prioritym

Bm The interference on the worst-case transmission
time experienced by message m due to processes
having a lower priority than prioritym

pm Number of packets of message m

f Frame

Jf Jitter of frame f

p Packet

289

System Configuration
ψ A system configuration

Ni A node in the hardware architecture

pei Processing element

Tcycle Time length of a TDMA cycle

TTDMA Time length of a TDMA round

Si The ith slot of a TDMA round

SS Size of the data field of the largest frame that
can be sent in slot S of a TDMA round

θm Maximum time between two consecutive slots of
a TDMA cycle carrying message m

s Transmission speed of a bus

φ Set of offsets

π Set of priorities

P Set of processes

α Set of frames on a CAN bus

β TDMA round configuration; set of frames on a TTP

bus determining the TDMA configuration

σ Sequence and size of slots in a TDMA round con-
figuration

Out, OutNi
Queue with messages awaiting transmission on
the hardware node Ni

OutTTP Queue with messages awaiting transmission on
the TTP bus from the gateway node of a multi-
cluster system

OutCAN Queue with messages awaiting transmission on
the CAN bus from the gateway node of a multi-
cluster system

290

sout Size of an outgoing queue

stotal Total size of all outgoing queues

C Cost function, design metric

291

List of Abbreviations

ABS Anti Blocking System

ACK Acknowledgement

ALAP As Late As Possible

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Processor

CAD Computer Aided Design

CAN Controller Area Network

CC Cruise Controller

CEM Central Electronic Module

CPG Conditional Process Graph

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DSP Digital Signal Processor

ECM Engine Control Module

EOF End Of Field

292

ET Event Triggered

ETC Event Triggered Cluster

ETM Electronic Throttle Module

FIFO First In First Out

FPGA Filed Programmable Gate Array

FPS Fixed Priority Scheduling

IFD Inter Frame Delimiter

MBI Message Base Interface

MDEL Message Descriptor List

MHTT Message Handling Time Table

MPCP Modified Partial Critical Path

PCP Partial Critical Path

RAM Random Access Memory

ROM Read Only Memory

SA Simulated Annealing

SOF Start Of Frame

TCM Transmission Control Module

TDMA Time Division Multiple Access

TT Time Triggered

TTC Time Triggered Cluster

TTP Time Triggered Protocol

VLSI Very Large Scale Integration

WCAO Worst Case Administrative Overhead

WCET Worst Case Execution Time

293

Bibliography

[Aar03] E. Aarts, “IC Design Challenges for Ambient Intelli-
gence,” in Proceedings of the Design Automation and
Test in Europe Conference, pages 2–7, 2003.

[Agr94] G. Agrawal, B. Chen, W. Zhao, S. Davari, “Guaran-
teeing Synchronous Message Deadlines with the
Token Medium Access Control Protocol,” in IEEE
Transactions on Computers, volume 43, issue 3,
pages 327–339, March 1994.

[Aud91] N. C. Audsley, A. Burns, M. F. Richardson, A. J. Well-
ings, “Hard Real-Time Scheduling: The Deadline
Monotonic Approach,” in Proceedings of the 8th IEEE
Workshop on Real-Time Operating Systems and Soft-
ware, pages 127–132, 1991.

[Aud93] N. C. Audsley, K. Tindell, A. Burns, “The End Of The
Line For Static Cyclic Scheduling?,” in Proceedings of
the 5th Euromicro Workshop on Real-Time Systems,
36 –41, 1993.

294

[Aud95] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, A.
J. Wellings, “Fixed Priority Pre-emptive Scheduling:
An Historical Perspective,” in Real-Time Systems,
volume 8, pages 173–198, 1995.

[Axe96] J. Axelsson, “Hardware/Software Partitioning Aim-
ing at Fulfilment of Real-Time Constraints,” in Jour-
nal of Systems Architecture, volume 42, issues 6–7,
pages 449–464, December 1996.

[Bal97] F. Balarin, editor, Hardware-Software Co-Design of
Embedded Systems: The Polis Approach, Kluwer
Academic Publishers, 1997.

[Bal98] F. Balarin, L. Lavagno, P. Murthy, A. Sangiovanni-Vin-
centelli, “Scheduling for Embedded Real-Time Sys-
tems,” in IEEE Design & Test of Computers, volume 15,
issue 1, pages 71–82, January–March 1998.

[Bar98a] S. Baruah, “Feasibility Analysis of Recurring
Branching Tasks,” in Proceedings of the 10th Euromi-
cro Workshop on Real-Time Systems, pages 138–145,
1998.

[Bar98b] S. Baruah, “A General Model for Recurring Real-
Time Tasks,” in Proceedings of the IEEE Real-Time
Symposium, pages 114–122, 1998.

[Bec98] J. E. Beck, D. P. Siewiorek, “Automatic Configuration
of Embedded Multicomputer Systems,” in IEEE
Transactions on CAD, volume 17, number 2, pages
84–95, 1998.

[Ber00] J. Berwanger, M. Peller, R. Griessbach, A New High
Performance Data Bus System for Safety-Related
Applications, http://www.byteflight.de, 2000.

295

[Ben96] A. Bender, “Design of an Optimal Loosely Coupled
Heterogeneous Multiprocessor System,” in Proceed-
ings of the Electronic Design and Test Conference,
pages 275–281, 1996.

[Bin01] E. Bini, G. Butazzo, G. Butazzo, “A Hyperbolic Bound
for the Rate Monotonic Algorithm,” in Proceedings of
the 13th Euromicro Conference on Real-Time Systems,
pages 59–66, 2001.

[Boe00] B. W. Boehm et al., Software Cost Estimation with
COCOMO II, Prentice-Hall, 2000.

[Bol97] I. Bolsens, H. J. De Man, B. Lin, K. Van Rompaey, S.
Vercauteren, D. Verkest, “Hardware/Software Co-
Design of Digital Telecommunication Systems,” in
Proceedings of the IEEE, volume 85, issue 3, pages
391–418, 1997.

[Bos91] R. Bosch GmbH, CAN Specification Version 2.0,
1991.

[Chi96] M. Chiodo, “Automotive Electronics: A Major Appli-
cation Field for Hardware-Software Co-Design,” in
Hardware/Software Co-Design, Kluwer Academic
Publishers, pages 295–310, 1996.

[Cho92] P. Chou, R. Ortega, G. Borriello, “Synthesis of Hard-
ware/Software Interface in Microcontroller-Based
Systems,” in Proceedings of the International Confer-
ence on Computer Aided Design, pages 488–495,
1992.

[Cho95a] P. H. Chou, R. B. Ortega, G. Borriello, “The Chinook
Hardware/Software Co-Synthesis System,” in Pro-
ceedings of the International Symposium on System
Synthesis, pages 22–27, 1995.

296

[Cho95b] P. Chou, G. Borriello, “Interval Scheduling: Fine-
Grained Code Scheduling for Embedded Systems,” in
Proceedings of the Design Automation and Test Con-
ference, pages 462–467, 1995.

[Cof72] E. G. Coffman Jr., R. L. Graham, “Optimal Schedul-
ing for two Processor Systems,” in Acta Informatica,
issue 1, pages 200–213, 1972.

[Dav95] J. M. Daveau, T. Ben Ismail, A. A. Jerraya, “Synthe-
sis of System-Level Communication by an Allocation-
Based Approach,” in Proceedings of the International
Symposium on System Synthesis, pages 150–155,
1995.

[Dav98] B. P. Dave, N. K. Jha, “COHRA: Hardware-Software
Cosynthesis of Hierarchical Heterogeneous Distrib-
uted Systems,” in IEEE Transactions on CAD, vol-
ume 17, number 10, pages 900–919, 1998

[Dav99] B. P. Dave, G. Lakshminarayana, N. J. Jha, “COSYN:
Hardware-Software Co-Synthesis of Heterogeneous
Distributed Embedded Systems,” in IEEE Transac-
tions on VLSI Systems, volume 7, number 1, pages
92–104, 1999.

[Deb97] J. A. Debardelaben, V. K. Madiseti, A. J. Gadient,
“Incorporating Cost Modeling in Embedded-System
Design,” in IEEE Design & Test of Computers, vol-
ume 14, number 3, pages 24–35, July–September
1997.

[Deo98] J. S. Deogun, R. M. Kieckhafer, A. W. Krings, “Stabil-
ity and Performance of List Scheduling with Exter-
nal Process Delays,” in Real Time Systems, volume
15, number 1, pages 5–38, 1998.

297

[Dic98] R. P. Dick, N. K. Jha, “CORDS: Hardware-Software
Co-Synthesis of Reconfigurable Real-Time Distrib-
uted Embedded Systems,” in Proceedings of the Inter-
national Conference on CAD, pages 62–67, 1998.

[Dob98] A. Doboli, P. Eles, “Scheduling under Control Depen-
dencies for Heterogeneous Architectures,” in Interna-
tional Conference on Computer Design, pages 602–
608, 1998.

[Eas02] EAST-EEA project, ITEA Full Project Proposal,
http://www.itea-office.org, 2002.

[EB03a] Encyclopædia Britannica Online, Computers,
http://search.eb.com/eb/article?eu=130080, 2003.

[EB03b] Encyclopædia BritannicaOnline, Intel Corporation,
http://search.eb.com/eb/article?eu=2242, 2003.

[Ech03] Echelon, LonWorks: The LonTalk Protocol Specifica-
tion, http://www.echelon.com, 2003.

[Edw97] S. Edwards, L. Lavagno, E. A. Lee, A.Sangoivanni-
Vincentelli, “Design of Embedded Systems: Formal
Models, Validation and Synthesis,” in Proceedings of
the IEEE, volume 85, issue 3, pages 366–390, March
1997.

[Edw00] S. Edwards, Languages for Digital Embedded Sys-
tems, Kluwer Academic Publishers, 2000.

[Ele97] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli, “System
Level Hardware/Software Partitioning Based on
Simulated Annealing and Tabu Search,” in Design
Automation for Embedded Systems, volume 2, num-
ber 1, pages 5–32, 1997.

298

[Ele98a] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, P. Pop,
“Scheduling of Conditional Process Graphs for the
Synthesis of Embedded Systems,” in Proceedings of
Design Automation and Test in Europe, pages 132–
139, 1998.

[Ele98b] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, P. Pop,
“Process Scheduling for Performance Estimation and
Synthesis of Hardware/Software Systems,” in Pro-
ceedings of the Euromicro Conference, pages 168–
175, 1998.

[Ele00] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with
Bus Access Optimization for Distributed Embedded
Systems,” in IEEE Transactions on VLSI Systems,
volume 8, number 5, pages 472–491, 2000.

[Ele02] P. Eles, Lecture Notes for System Design and Method-
ology, http://www.ida.liu.se/~TDTS30, 2002.

[Eng99] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson,
H. Hansson, “Towards Industry Strength Worst-Case
Execution Time Analysis,” in Swedish National Real-
Time Conference, 1999.

[Erm97] H. Ermedahl, H. Hansson, M. Sjödin, “Response-
Time Guarantees in ATM Networks,” in Proceedings
of the IEEE Real-Time Systems Symposium, pages
274–284, 1997.

[Ern93] R. Ernst, J. Henkel, T. Benner, “Hardware/Software
Co-synthesis for Microcontrollers,” in IEEE Design &
Test of Computers, pages 64–75, September 1997.

[Ern97] R. Ernst, W. Ye, “Embedded Program Timing Analy-
sis Based on Path Clustering and Architecture Clas-
sification,” in Proceedings of the International
Conference on CAD, pages 598–604, 1997.

299

[Ern98] R. Ernst, “Codesign of Embedded Systems: Status
and Trends,” in IEEE Design and Test of Computers,
volume 15, number 2, pages 45–54, April–June 1998.

[Thi99] L. Thiele, K. Strehl, D. Ziegengein, R. Ernst, J. Teich,
“FunState—An Internal Design Representation for
Codesign,” in International Conference on Computer-
Aided Design, pages 558–565, 1999.

[Fle02] FlexRay Requirements Specification,
http://www.flexray-group.com/, 2002.

[Foh93] G. Fohler, “Realizing Changes of Operational Modes
with Pre Run-time Scheduled Hard Real-Time Sys-
tems,” in Responsive Computer Systems, H. Kopetz
and Y. Kakuda, editors, pages 287–300, Springer
Verlag, 1993.

[Gaj83] D. D. Gajski, R. H. Kuhn, “Guest Editor’s Introduc-
tion: New VLSI Tools,” in IEEE Computer, December
1983.

[Gaj95] D. D. Gajski, F. Vahid, “Specification and Design of
Embedded Hardware-Software Systems,” in IEEE
Design and Test of Computers, volume 12, number 1,
pages 53–67, Spring 1995.

[Ger96] R. Gerber, D. Kang, S. Hong, M. Saksena, “End-to-
End Design of Real-Time Systems,” in Formal Meth-
ods in Real-Time Computing, D. Mandrioli and C.
Heitmeyer, editors, John Wiley & Sons, 1996.

[Gon95] J. Gong, D. D. Gajski, S. Narayan, “Software Estima-
tion Using A Generic-Processor Model,” in Proceed-
ings of the European Design and Test Conference,
pages 498–502, 1995.

300

[Gup93] R. K. Gupta, G. De Micheli, “Hardware-Software
Cosynthesis for Digital Systems,” in IEEE Design &
Test of Computers, volume 10, number 3, pages 29–
41, September 1993.

[Gup95] R. K. Gupta, Co-Synthesis of Hardware and Software
for Digital Embedded Systems, Kluwer Academic Pub-
lishers, Boston, 1995.

[Gut95] J, J, Gutiérrez García, M. González Harbour, “Opti-
mized Priority Assignment for Tasks and Messages
in Distributed Hard Real-Time Systems,” in Proceed-
ings of the 3rd Workshop on Parallel and Distributed
Real-Time Systems, pages 124–132, 1995.

[Han02] P. Hansen, The Hansen Report on Automotive Elec-
tronics, http://www.hansenreport.com/, July–August,
2002.

[Hau02] C. Haubelt, J. Teich, K. Richter, R. Ernst, “System
Design for Flexibility,” in Proceedings of the Design,
Automation and Test in Europe Conference, pages
854–861, 2002.

[Hen95] J. Henkel, R. Ernst, “A Path-Based Technique for
Estimating Hardware Run-time in Hardware/Soft-
ware Cosynthesis,” in Proceedings of the Interna-
tional Symposium on System Synthesis, pages 116–
121, 1995.

[Hoy92] K. Hoyme, K. Driscoll, “SAFEbus,” in IEEE Aero-
space and Electronic Systems Magazine, volume 8,
number 3, pages 34–39, 1992.

[Jor97] P. B. Jorgensen, J. Madsen, “Critical Path Driven
Cosynthesis for Heterogeneous Target Architec-
tures,” in Proceedings of the International Workshop
on Hardware/Software Codesign, pages 15–19, 1997.

301

[Jos01] K. Jost, “From Fly-by-Wire to Drive-by-Wire,” Auto-
motive Engineering International, 2001.

[Kal97] A. Kalawade, E.A. Lee, “The Extended Partitioning
Problem: Hardware/Software Mapping, Scheduling,
and Implementation-Bin Selection,” in Design Auto-
mation for Embedded Systems, volume 2, pages 125–
163, 1997.

[Kas84] H. Kasahara, S. Narita, “Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel Process-
ing,” in IEEE Transaction on Computers, volume 33,
number 11, pages 1023–1029, 1984.

[Kie97] B. Kienhuis, E. Deprettere, K. Vissers, P. Van Der
Wolf, “An Approach for Quantitative Analysis of
Application-Specific Dataflow Architectures,” in Pro-
ceedings of the IEEE International Conference on
Application-Specific Systems, Architectures and Pro-
cessors, pages 338 –349, 1997.

[Keu00] K. Keutzer, S. Malik, A. R. Newton, “System-Level
Design: Orthogonalization of Concerns and Platform-
Based Design,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol-
ume 19, number 12, December 2000.

[Kla01] S. Klaus, S. A. Huss, “Interrelation of Specification
Method and Scheduling Results in Embedded
System Design,” in Proceedings of the ECSI Interna-
tional Forum on Design Languages, 2001.

[Knu99] P. V. Knudsen, J. Madsen, “Integrating Communica-
tion Protocol Selection with Hardware/Software
Codesign,” in IEEE Transactions on CAD, volume 18,
number 8, pages 1077–1095, 1999.

302

[Kop95] H. Kopez, R. Nossal, “The Cluster-Compiler—A Tool
for the Design of Time Triggered Real-Time Sys-
tems,” in Proceedings of the ACM SIGPLAN Work-
shop. on Languages, Compilers, and Tools for Real-
Time Systems, pages 108–116, 1995.

[Kop97a] H. Kopetz, Real-Time Systems-Design Principles for
Distributed Embedded Applications, Kluwer Aca-
demic Publishers, 1997.

[Kop97b] H. Kopetz et al., “A Prototype Implementation of a
TTP/C Controller,” in SAE Congress and Exhibition,
1997.

[Kop99] H. Kopetz, “Automotive Electronics,” in Proceedings
of the 11th Euromicro Conference on Real-Time Sys-
tems, pages 132–140, 1999.

[Kop01] H. Kopetz, A Comparison of TTP/C and FlexRay,
technical report 2001/10, Technical University
Vienna, 2001.

[Kop03] H. Kopetz, G. Bauer, “The Time-Triggered Architec-
ture,” in Proceedings of the IEEE, volume 91, issue 1,
pages 112–126, 2003.

[Kuc97] K. Kuchcinski, “Embedded System Synthesis by
Timing Constraint Solving,” in Proceedings of the
International Symposium on System Synthesis, pages
50–57, 1997.

[Kuc01] K. Kuchcinski, “Constraints Driven Design Space
Exploration for Distributed Embedded Systems,” in
Journal of Systems Architecture, volume 47, issues
3–4, pages 241–261, 2001.

303

[Kwo96] Y. K. Kwok, I. Ahmad, “Dynamic Critical-Path
Scheduling: an Effective Technique for Allocating
Task Graphs to Multiprocessors,” in IEEE Transac-
tions on Parallel and Distributed Systems, volume 7,
number 5, pages 506–521, 1996.

[Lak99] G. Lakshminarayana, K. S. Khouri, N. K. Jha,
“Wavesched: A Novel Scheduling Technique for Con-
trol-Flow Intensive Designs,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, volume 18, number 5, pages 108–113, 1999.

[Lav99] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sen-
tovich, “Models of Computation for Embedded Sys-
tem Design,” in System-Level Synthesis, Kluwer
Academic Publishers, pages 45–102, 1999.

[Lee95] E. A. Lee, T. M. Parks, “Dataflow process networks,”
in Proceedings of the IEEE, volume 83, pages 773–
801, May 1995.

[Lee99] C. Lee, M. Potkonjak, W. Wolf, “Synthesis of Hard
Real-Time Application Specific Systems,” in Design
Automation for Embedded Systems, volume 4, issue
4, pages 215–241, 1999.

[Lee02] G. Leen, D. Hefffernan, “Expanding Automotive
Electronic Systems,” in IEEE Computer, pages 88–
93, January 2002.

[Leh89] J. Lehoczky, L. Sha, Y. Ding, “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and
Average Case Behaviour,” in Proceedings of the 11th

Real-Time Symposium, pages 166–171, 1989.

[Leh90] J. P. Lehoczky, “Fixed Priority Scheduling of Periodic
Task Sets With Arbitrary Deadlines,” in Proceedings
of 11th IEEE Real-Time Symposium, pages 201–209,
1990.

304

[Li95] Y. S. Li, S. Malik, “Performance Analysis of Embed-
ded Software Using Implicit Path Enumeration,” in
Proceedings of the Design Automation Conference,
pages 456–461, 1995.

[Li00] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, J.
Stockwood, “Hardware-Software Co-Design of
Embedded Reconfigurable Architectures,” in Pro-
ceedings of the Design Automation Conference, pages
507–512, 2000.

[Lie99] P. Lieverse, P. van der Wolf, E. Deprettere, K. Viss-
ers, “A Methodology for Architecture Exploration of
Heterogeneous Signal Processing Systems,” in IEEE
Workshop on Signal Processing Systems, pages 181–
190, 1999.

[Liu73] C. L. Liu, J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environ-
ment,” in Journal of the ACM, volume 20, number 1,
pages 46–61, 1973.

[Lön99] H. Lönn, J. Axelsson, “A Comparison of Fixed-Prior-
ity and Static Cyclic Scheduling for Distributed
Automotive Control Applications,” in Proceedings of
the 11th Euromicro Conference on Real-Time Systems,
pages 142–149, 1999.

[Lun99] T. Lundqvist, P. Stenström, “An Integrated Path and
Timing Analysis Method Based on Cycle-Level Sym-
bolic Execution,” in Real-Time Systems, volume 17,
number 2–3, pages 183–207, 1999.

[Mal97] S. Malik, M. Martonosi, Y.S. Li, “Static Timing Anal-
ysis of Embedded Software,” in Proceedings of the
Design Automation Conference, pages 147–152, 1997.

[Mar90] S. Martello, P. Toth, Kanpsack Problems: Algorithms
and Computer Implementations, Wiley, 1990.

305

[Mar02] G. Martin, F. Schirrmeister, “A Design Chain for
Embedded Systems,” Computer, volume 35, issue 3,
pages 100–103, March 2002.

[Mc92] K. McMillan, D. Dill, “Algorithms for Interface Tim-
ing Verification,” in Proceedings of the IEEE Interna-
tional Conference on Computer Design, pages 48–51,
1992.

[Mic96] G. De Micheli, M.G. Sami, editors, “Hardware/Soft-
ware Co-Design,” NATO ASI 1995, Kluwer Academic
Publishers, 1996.

[Mic97] G. De Micheli, R.K. Gupta, “Hardware/Software Co-
Design,” in Proceedings of the IEEE, volume 85, issue
3, pages 349–365, 1997.

[Min00] P. S. Miner, “Analysis of the SPIDER Fault-Tolerance
Protocols,” in Proceedings of the 5th NASA Langley
Formal Methods Workshop, 2000.

[Moo97] V. Mooney, T. Sakamoto, G. De Micheli, “Run-Time
Scheduler Synthesis for Hardware-Software Systems
and Application to Robot Control Design,” in Pro-
ceedings of the International Workshop on Hardware-
Software Co-design, pages 95–99, 1997.

[Nar94] S. Narayan, D. D. Gajski, “Synthesis of System-Level
Bus Interfaces,” in Proceedings of the European
Design and Test Conference, pages 395–399, 1994.

[Ort98] R. B. Ortega, G. Borriello, “Communication Synthe-
sis for Distributed Embedded Systems,” in Proceed-
ings of the International Conference on CAD, pages
437–444, 1998.

306

[Pal97] J. C. Palencia, J. J. Gutiérrez García, M. González
Harbour, “On the Schedulability Analysis for Distrib-
uted Hard Real-Time Systems,” in Proceedings of the
Euromicro Conference on Real Time Systems, pages
136–143, 1997.

[Pal98] J. C. Palencia, M. González Harbour, “Schedulability
Analysis for Tasks with Static and Dynamic Offsets,”
in Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 26–37, 1998.

[Pal99] J. C. Palencia, M. González Harbour, “Exploiting Pre-
cedence Relations in the Schedulability Analysis of
Distributed Real-Time Systems,” in Proceedings of
the 20th IEEE Real-Time Systems Symposium, pages
328–339, 1999.

[Pop98] P. Pop, P. Eles, Z. Peng, “Scheduling Driven Partition-
ing of Heterogeneous Embedded Systems,” in Pro-
ceedings of the Swedish Workshop on Computer
Systems Architecture, pages 99–102, 1998.

[Pop99a] P. Pop, P. Eles, Z. Peng, “Scheduling with Optimized
Communication for Time-Triggered Embedded Sys-
tems,” in Proceedings of the 7th International Work-
shop on Hardware/Software Codesign, pages 178–
182, 1999.

[Pop99b] P. Pop, P. Eles, Z. Peng, “Communication Scheduling
for Time-Triggered Systems,” in Work in Progress
Proceedings of the 11th Euromicro Conference on
Real-Time Systems, 1999.

[Pop99c] P. Pop, P. Eles, Z. Peng, “An Improved Scheduling
Technique for Time-Triggered Embedded Systems,”
in Proceedings of the 25th Euromicro Conference,
pages 303–310, 1999.

307

[Pop99d] P. Pop, P. Eles, Z. Peng, “Schedulability-Driven Com-
munication Synthesis for Time Triggered Embedded
Systems,” in Proceedings of the 6th International Con-
ference on Real-Time Computing Systems and Appli-
cations, pages 287–294, 1999.

[Pop00a] P. Pop, P. Eles, Z. Peng, “Bus Access Optimization for
Distributed Embedded Systems Based on Schedula-
bility Analysis,” in Proceedings of the Design, Auto-
mation and Test in Europe Conference, pages 567–
574, 2000.

[Pop00b] P. Pop, P. Eles, Z. Peng, “Performance Estimation for
Embedded Systems with Data and Control Depen-
dencies,” in Proceedings of the 8th International Work-
shop on Hardware/Software Codesign, pages 62–66,
2000.

[Pop00c] P. Pop, P. Eles, Z. Peng, “Schedulability Analysis for
Systems with Data and Control Dependencies,” in
Proceedings of the 12th Euromicro Conference on
Real-Time Systems, pages 201–208, 2000.

[Pop01a] P. Pop, P. Eles, T. Pop, Z. Peng, “An Approach to
Incremental Design of Distributed Embedded Sys-
tems,” in Proceedings of the Design Automation Con-
ference, pages 450–455, 2001.

[Pop01b] P. Pop, P. Eles, T. Pop, Z. Peng, “Minimizing System
Modification in an Incremental Design Approach,” in
Proceedings of the International Workshop on Hard-
ware/Software Codesign, pages 183–188, 2001.

[Pop02a] P. Pop, P. Eles, Z. Peng, “Flexibility Driven Schedul-
ing and Mapping for Distributed Real-Time Sys-
tems,” in Proceedings of the International Conference
on Real-Time Computing Systems and Applications,
pages 337–346, 2002.

308

[Pop02b] T. Pop, P. Eles, Z. Peng, “Holistic Scheduling and
Analysis of Mixed Time/Event-Triggered Distributed
Embedded Systems,” in International Symposium on
Hardware/Software Codesign, pages 187–192, 2002.

[Pop02c] P. Pop, P. Eles, Z. Peng, “Schedulability-Driven Com-
munication Synthesis for Time-Triggered Embedded
Systems,” to be published in Journal of Real-Time
Systems.

[Pop03a] P. Pop, P. Eles, Z. Peng, “Schedulability Analysis and
Optimization for the Synthesis of Multi-Cluster Dis-
tributed Embedded Systems,” in Proceedings of the
Design Automation and Test in Europe Conference,
pages 184–189, 2003.

[Pop03b] P. Pop, P. Eles, Z. Peng, “Schedulability-Driven
Frame Packing for Multi-Cluster Distributed
Embedded Systems,” to be published in Proceedings
of the ACM SIGPLAN Conference on Languages,
Compilers and Tools for Embedded Systems, 2003.

[Pra92] S. Prakash, A. Parker, “SOS: Synthesis of Applica-
tion-Specific Heterogeneous Multiprocessor Sys-
tems,” in Journal of Parallel and Distributed
Computers, volume 16, pages 338–351, 1992.

[Pro03] Profibus International, PROFIBUS DP Specifica-
tion, http://www.profibus.com/, 2003.

[Raj98] A. Rajnak, K. Tindell, L. Casparsson, Volcano Com-
munications Concept, Volcano Communication Tech-
nologies AB, 1998.

[Rag02] D. Ragan, P. Sandborn, P. Stoaks, “A Detailed Cost
Model for Concurrent Use with Hardware/Software
Co-Design,” in Proceedings of the Design Automation
Conference, pages 269–274, 2002.

309

[Ree93] C. R. Reevs, Modern Heuristic Techniques for Combi-
natorial Problems, Blackwell Scientific Publications,
1993.

[REV94] REVIC Software Cost Estimating Model, User’s Man-
ual, V9.0–9.2, US Air Force Analysis Agency, 1994.

[Ric02] K. Richter, R. Ernst, “Event Model Interfaces for
Heterogeneous System Analysis,” in Proceedings of
the Design Automation and Test in Europe Confer-
ence, pages 506–513, 2002.

[Ric03] K. Richter, M. Jersak, R. Ernst, “A Formal Approach
to MpSoC Performance Verification,” in Computer,
volume 36, issue 4, pages 60–67, 2003.

[Rho99] D. L. Rhodes, Wayne Wolf, “Co-Synthesis of Hetero-
geneous Multiprocessor Systems using Arbitrated
Communication,” in Proceeding of the International
Conference on CAD, pages 339–342, 1999.

[Rus01] J. Rushby, “Bus Architectures for Safety-Critical
Embedded Systems,” Springer–Verlag Lecture Notes
in Computer Science, volume 2211, pages 306–323,
2001.

[San00] K. Sandström, C. Norström, “Frame Packing in Real-
Time Communication,” in Proceedings of the Interna-
tional Conference on Real-Time Computing Systems
and Applications, pages 399–403, 2000.

[Sha90] L. Sha, R. Rajkumar, J. Lehoczky, “Priority Inherit-
ance Protocols: An Approach to Real-Time Synchro-
nization,” in IEEE Transactions on Computers,
volume 39, number 9, pages 1175–1185, 1990.

[Sem02] Semiconductor Industry Association, The Interna-
tional Technology Roadmap for Semiconductors,
http://public.itrs.net/, 2002.

310

[Sof97] SoftEST—Version 1.1, US Air Force Analysis Agency,
1997.

[Sta97] J. Staunstrup, W. Wolf, editors, Hardware/Software
Co-Design: Principles and Practice, Kluwer Academic
Publishers, 1997.

[Str89] J. K. Strosnider, T. E. Marchok, “Responsive, Deter-
ministic IEEE 802.5 Token Ring Scheduling,” in
Journal of Real-Time Systems, volume 1, issue 2,
pages 133–158, 1989.

[Suz96] K. Suzuki, A. Sangiovanni-Vincentelli, “Efficient
Software Performance Estimation Methods for Hard-
ware/Software Codesign,” in Proceedings of the
Design Automation Conference, pages 605–610, 1996.

[Sta93] J. A. Stankovic, K. Ramamritham, editors, Advances
in Real-Time Systems, IEEE Computer Society
Press, 1993.

[Tab00] B. Tabbara, A. Tabbara, A. Sangiovanni-Vincentelli,
Function/Architecture Optimization and Co-Design
of Embedded Systems, Kluwer Academic Publishers,
2000.

[Tin92] K. Tindell, A. Burns, A. J. Wellings, “Allocating Real-
Time Tasks (An NP-Hard Problem made Easy),” in
Journal of Real-Time Systems, volume 4, issue 2,
pages 145–165, 1992.

[Tin94a] K. Tindell, J. Clark, “Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems,” in Micro-
processing and Microprogramming, volume 40, pages
117–134, 1994.

[Tin94b] K. Tindell, Adding Time-Offsets to Schedulability
Analysis, Technical Report Number YCS–94–221,
Department of Computer Science, University of York,
1994.

311

[Tin95] K. Tindell, A. Burns, A. J. Wellings, “Calculating
Controller Area Network (CAN) Message Response
Times,” in Control Engineering Practice, volume 3,
number 8, pages 1163–1169, 1995.

[Tur99] J. Turley, “Embedded Processors by the Numbers,” in
Embedded Systems Programming, May 1999.

[Ull75] D. Ullman, “NP-Complete Scheduling Problems,” in
Journal of Computer Systems Science, volume 10,
pages 384–393, 1975.

[Vah94] F. Vahid, J. Gong, D. Gajski, “A Binary-Constraint
Search Algorithm for Minimizing Hardware during
Hardware/Software Partitioning,” in Proceedings of
the European Design Automation Conference, pages
214–219, 1994.

[Vah02] F. Vahid, T. Givargis, Embedded Systems Design: A
Unified Hardware/Software Introduction, John
Wiley & Sons, 2002.

[Val95] C. A. Valderrama, A. Changuel, P. V. Raghavan, M.
Abid, T. Ben Ismail, A. A. Jerraya, “A Unified Model
for Co-Simulation and Co-Synthesis of Mixed Hard-
ware/Software Systems,” in Proceedings of the Euro-
pean Design and Test Conference, pages 180–184,
1995.

[Val96] C. A. Valderrama, F. Nacabal, P. Paulin, A. A. Jer-
raya, “Automatic Generation of Interfaces for Dis-
tributed C-VHDL Cosimulation of Embedded
Systems: an Industrial Experience,” in Proceedings
of the International Workshop on Rapid System Pro-
totyping, pages 72–77, 1996.

312

[Ver96] D. Verkest, K. Van Rompaey, I. Bolsens, H. De Man,
“CoWare—A Design Environment for Heteroge-
neous Hardware/Software Systems,” in Design Auto-
mation for Embedded Systems, volume 1, pages 357–
386, 1996.

[Wal94] E. Walkup, G. Borriello, Automatic Synthesis of
Device Drivers for Hardware/Software Co-design,
Technical Report 94–06–04, Dept. of Computer Sci-
ence and Engineering, University of Washington,
1994.

[Wol01] W. Wolf, Computers as Components: Principles of
Embedded Computing System Design, Morgan Kauf-
mann Publishers, 2001.

[Wol02] F. Wolf, J. Staschulat, R. Ernst, “Associative Caches
in Formal Software Timing Analysis,” in Proceedings
of the 39th Conference on Design Automation, pages
622–627, 2002.

[Wol94] W. Wolf, “Hardware-Software Co-Design of Embed-
ded Systems,” in Proceedings of the IEEE, volume 82,
number 7, pages 967–989, 1994.

[Wol97] W. Wolf, “An Architectural Co-Synthesis Algorithm
for Distributed, Embedded Computing Systems,” in
IEEE Transactions on VLSI Systems, volume 5, num-
ber 2, pages 218–229, June 1997.

[Wol03] W. Wolf, “A Decade of Hardware/Software Codesign,”
in Computer, volume 36, issue 4, pages 38–43, 2003.

[Wu90] M. Y. Wu, D. D. Gajski, “Hypertool: A Programming
Aid for Message-Passing Systems,” in IEEE Transac-
tions on Parallel and Distributed Systems, volume 1,
number 3, pages 330–343, 1990.

313

[XbW98] X-by-Wire Consortium, X-By-Wire: Safety Related
Fault Tolerant Systems in Vehicles,
http://www.vmars.tuwien.ac.at/projects/xbywire/,
1998.

[Xie01] Y. Xie, W. Wolf, “Allocation and Scheduling of Condi-
tional Task Graph in Hardware/Software Co-Synthe-
sis,” in Proceedings of the Design Automation and
Test in Europe Conference, pages 620–625, 2001.

[Xu00] J. Xu, D. L. Parnas, “Priority Scheduling Versus Pre-
Run-Time Scheduling,” in Journal of Real Time Sys-
tems, volume 18, issue 1, pages 7–24, 2000.

[Xu93] J. Xu, D. L. Parnas, “On Satisfying Timing Con-
straints in Hard-Real-Rime Systems,” in IEEE
Transactions Software Engineering, volume 19, num-
ber 1, pages 70–84, 1993.

[Yen97] T. Y. Yen, W. Wolf, Hardware-Software Co-Synthesis of
Distributed Embedded Systems, Kluwer Academic
Publishers, 1997.

[Yen98] T. Yen, W. Wolf, “Performance Estimation for Real-
Time Distributed Embedded Systems,” in IEEE
Transactions on Parallel and Distributed Systems,
volume 9, number 11, pages 1125–1136, 1998.

