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Algebraic methods for X-ray computed tomography

Relaxed incremental proximal methods

Numerical experiments
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X-ray Computed Tomography

Measurement model

Iy = Ipexp <— /M(Ul,uz) dS)
!

log(lo/I1) =~ a] =
Io

b=Ax +e

Parallel beam measurement geometry

m
i
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Algebraic reconstruction technique

Projection on hyperplane #H; = {z|al'z = b;}

ai(a?xk — bl)

Py, (xp) = argmin ||z — zk|| = = — E

rEH,; Hal

Kaczmarz’s method / ART

Th+1 :IOP'H% (xk)+(1_p)xk7 (S {L"'?m}

Relaxation parameter p € (0, 2)
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Example — consistent system

17 equations, p = 1.0
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Example — consistent system

17 equations, p = 0.5
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Example — inconsistent system

17 equations, p = 1.0
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Example — inconsistent system

17 equations, p = 0.5

35 equations, p = 0.5
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Example — inconsistent system

17 equations, p = 0.2
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Example — inconsistent system, randomization

17 equations, p = 1.0 35 equations, p = 1.0
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Example — inconsistent system, randomization

17 equations, p = 0.5 35 equations, p =
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Example — inconsistent system, randomization

17 equations, p = 0.2 35 equations, p =
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Example — underdetermined system
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Example — consistent system
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Example — consistent system
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Example — consistent system
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Tomographic image reconstruction

lll-posed inverse problem — we need regularization!

Incorporate a priori knowledge in reconstruction problem
e spatial information (smoothness, piecewise constant/affine, ...)

e bounds (nonnegativity, box constraints, ...)

® sparsity

Large-scale optimization problem
e gradient computation is expensive
e may not be differentiable

9/28 DTU Compute, Technical University of Denmark Generalized Row-Action Methods

March 27, 2014

=]
=
=

i



Superiorization

Kaczmarz’'s method is pertubation resilient (Herman et al., 2009)
Tpp1 = Pz + trvg), P = Py, 0 0Py, 0Py,

Converges if Ax = bis consistent and t;, — 0 for £ — oo

Perturbed iteration yields a “superior” solution in some sense
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Incremental methods (l)

minimize Zfi(x)
=1
subjectto z €C

Incremental (sub)gradient iteration:

i1 = Po(zn — 46V fi (zk), Vi (zk) € 0fi, (zx)

e sublinear rate of convergence — initial convergence often very fast

e diminishing stepsize or “oscillation” that depends on stepsize

e goes back to Kibardin (1980), Litvakov (1966)

o Bertsekas (1996): incremental least-squares and extended Kalman filter
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Incremental methods (ll)

Incremental proximal iteration:
Tyt = argmin{ fi, (z) + — o — 2|2}
- 1
zeC g 2ty
equivalently
Thy1 = Tk — thGkt1, Gk € Ofi (Try1) + Ne(Tri1)
Linearized proximal iteration: let g;, € 0f;, (k)

. 1
Trr1 = Fe (argmm{fik (zx) + ggx + —|jz— l’kHQ})
TERM 2tk

= Pe(zp — trgr)
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Incremental proximal gradient methods (1)

minimize Y7, (gi(z) + hi(z))
subjectto ze€C

Algorithm 1 (Bertsekas, 2011)

P argmin{gik (u) + |lu — ZL'kHQ}

2,
rrr1 = Pe (zk — tk%hik(zk))
Interpretation

i1 = Py — t,.Vgi, (21) — tsVhi (21))
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Incremental proximal gradient methods (ll)

Algorithm 2 (Bertsekas, 2011)
2L = Xp — tk%hik (k)
i = axgming, (u) + 5 u— 2}
Interpretation
Tpi1 = argéréin{gik(u) + ﬁhzk(xk) u + —Hu — ka }

= Pe(x, — tkVgi, (Tr41) — 6 Vhi, (z1))
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Relaxed incremental proximal gradient methods

Algorithm 1

. 1
wg = argmm{gik (u) + . |lu — a:kHQ}
u€ER” k

2k = W — tkﬁhik (wk)
zpr1 = Pe(par+ (1 — p)ay)
Algorithm 2
W = Wk — tkﬁhik (wk)
. 1
2, = argmin{ g;, (u) + iHu — wkHz}
u€R™ k

Tpp1 = Pe(pzr+ (1 — p)zy)
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Convergence results

Cyclic order or random order?

e cyclic order yields worst-case performance bounds
e random order yields expected performance bounds

Constant stepsize or diminishing stepize?

e constant stepsize yields convergence within an error bound
e diminishing stepsize yields exact convergence

Randomized cyclic order works well in practice
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R-IPG vs. ART

minimize  (1/2) Y7, (alz — b;)?
subjectto z €C

Let g;(x) = (1/2)(al'z — b;)? and h;(z) = 0:

a;, (ag;xk — bzk))

t !+ llai, |12

Tpye1 = I (iﬂk —p

Interpretation: ART with damped step size

17/28 DTU Compute, Technical University of Denmark Generalized Row-Action Methods March 27, 2014

=]
=
=

i



R-IPG vs. ART — numerical example

2D tomography problem

® 256 x256 Shepp—-Logan phantom

e n = 2562 = 65536 variables

e p = 120 uniformly spaced angles

e r = 362 parallel rays

o m = pr = 43440 measurements

e Gaussian noise: e; ~ N(0,0.02 - ||b]|o0)

Algorithm: R-IPG with constant step size
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R-IPG vs. ART — numerical example
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Regularized data fitting

minimize  f(z) = (1/2)||Az — b||*> + A h(z)
subjectto z€C

Example: express f(x) as

§@) =3 /DL = b+ 2 h)
=1 gz(x) =1 m
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Total-variation regularization
minimize  (1/2)||Az — b||j3 + A >, || Dizl|2
subjectto z€C

Let gi(z) = [|Aiz — bil|3 and hi(z) = (\/p) iy |1 Diz|l2

. 1
2, = argmin{ g;, (u) + gHu — ackHZ}
u€eR” k

= — AZ; (AzkAz; + t;lf)fl(Aikl'k — blk)
w1 = Pe(p(zr — teVhi, (21)) + (1 — p)ay)
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Total-variation regularization — numerical example

2D tomography problem

e 512x512 Shepp—-Logan phantom

o n = 5122 = 262144 variables

e p = 60 uniformly spaced angles

e r = 724 parallel rays

® m = pr = 43440 measurements

e Gaussian noise: e; ~ N (0,0.01 - ||b]|c)

Algorithm: R-IPG1 with diminishing step-size sequence
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Regularization curve
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Relaxed incremental proximal subgradient method =
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Primal-dual first-order method (Chambolle & Pock)
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Relaxed IPG

Chambolle-Pock
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Summary

e relaxed incremental proximal gradient methods
e slow global rate of convergence
o often fast initial rate rate of convergence

e hybrid methods that transition from incremental to non-incremental method
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Thank you for listening!

mskan@dtu.dk
http://compute.dtu.dk/~mskan
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