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X-ray Computed Tomography

Measurement model

I1 = I0 exp

(
−
∫

l
µ(u1, u2) ds

)

log(I0/I1) ≈ aTi x

b = Ax+ e
I0

I1

Parallel beam measurement geometry

Detector

X-ray source
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Algebraic reconstruction technique

Projection on hyperplane Hi = {x | aTi x = bi}

PHi(xk) = argmin
x∈Hi

‖x− xk‖ = xk −
ai(a

T
i xk − bi)
‖ai‖2

Kaczmarz’s method / ART

xk+1 = ρPHik
(xk) + (1− ρ)xk, ik ∈ {1, . . . ,m}

Relaxation parameter ρ ∈ (0, 2)
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Example — consistent system

17 equations, ρ = 1.0 35 equations, ρ = 1.0
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Example — consistent system

17 equations, ρ = 0.5 35 equations, ρ = 0.5
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Example — inconsistent system

17 equations, ρ = 1.0 35 equations, ρ = 1.0
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Example — inconsistent system

17 equations, ρ = 0.5 35 equations, ρ = 0.5
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Example — inconsistent system

17 equations, ρ = 0.2 35 equations, ρ = 0.2
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Example — inconsistent system, randomization

17 equations, ρ = 1.0 35 equations, ρ = 1.0
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Example — inconsistent system, randomization

17 equations, ρ = 0.5 35 equations, ρ = 0.5
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Example — inconsistent system, randomization

17 equations, ρ = 0.2 35 equations, ρ = 0.2

6 / 28 DTU Compute, Technical University of Denmark Generalized Row-Action Methods March 27, 2014



Example — underdetermined system
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Example — consistent system

ρ = 1.0
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Example — consistent system

ρ = 0.5
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Example — consistent system

ρ = 1.5
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Tomographic image reconstruction

Ill-posed inverse problem — we need regularization!

Incorporate a priori knowledge in reconstruction problem
• spatial information (smoothness, piecewise constant/affine, ...)
• bounds (nonnegativity, box constraints, ...)
• sparsity
• ...

Large-scale optimization problem
• gradient computation is expensive
• may not be differentiable

9 / 28 DTU Compute, Technical University of Denmark Generalized Row-Action Methods March 27, 2014



Superiorization

Kaczmarz’s method is pertubation resilient (Herman et al., 2009)

xk+1 = P
(
xk + tkvk

)
, P = PHm ◦ · · · ◦ PH2 ◦ PH1

Converges if Ax = b is consistent and tk → 0 for k →∞

Perturbed iteration yields a “superior” solution in some sense
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Incremental methods (I)

minimize
m∑

i=1

fi(x)

subject to x ∈ C

Incremental (sub)gradient iteration:

xk+1 = PC
(
xk − tk∇̃fik(xk)

)
, ∇̃fik(xk) ∈ ∂fik(xk)

• sublinear rate of convergence — initial convergence often very fast
• diminishing stepsize or “oscillation” that depends on stepsize
• goes back to Kibardin (1980), Litvakov (1966)
• Bertsekas (1996): incremental least-squares and extended Kalman filter
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Incremental methods (II)

Incremental proximal iteration:

xk+1 = argmin
x∈C

{
fik(x) +

1

2tk
‖x− xk‖2

}

equivalently

xk+1 = xk − tkgk+1, gk+1 ∈ ∂fik(xk+1) +NC(xk+1)

Linearized proximal iteration: let gk ∈ ∂fik(xk)

xk+1 = PC
(
argmin
x∈Rn

{
fik(xk) + gTk x+

1

2tk
‖x− xk‖2

})

= PC
(
xk − tkgk

)
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Incremental proximal gradient methods (I)

minimize
∑m

i=1

(
gi(x) + hi(x)

)

subject to x ∈ C

Algorithm 1 (Bertsekas, 2011)

zk = argmin
u∈Rn

{
gik(u) +

1

2tk
‖u− xk‖2

}

xk+1 = PC
(
zk − tk∇̃hik(zk)

)

Interpretation

xk+1 = PC
(
xk − tk∇̃gik(zk)− tk∇̃hik(zk)

)
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Incremental proximal gradient methods (II)

Algorithm 2 (Bertsekas, 2011)

zk = xk − tk∇̃hik(xk)

xk+1 = argmin
u∈C

{
gik(u) +

1

2tk
‖u− zk‖2

}

Interpretation

xk+1 = argmin
u∈C

{
gik(u) + ∇̃hik(xk)Tu+

1

2tk
‖u− xk‖2

}

= PC
(
xk − tk∇̃gik(xk+1)− tk∇̃hik(xk)

)
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Relaxed incremental proximal gradient methods

Algorithm 1

wk = argmin
u∈Rn

{
gik(u) +

1

2tk
‖u− xk‖2

}

zk = wk − tk∇̃hik(wk)
xk+1 = PC

(
ρ zk + (1− ρ)xk

)

Algorithm 2

wk = wk − tk∇̃hik(wk)

zk = argmin
u∈Rn

{
gik(u) +

1

2tk
‖u− wk‖2

}

xk+1 = PC
(
ρ zk + (1− ρ)xk

)
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Convergence results

Cyclic order or random order?
• cyclic order yields worst-case performance bounds
• random order yields expected performance bounds

Constant stepsize or diminishing stepize?
• constant stepsize yields convergence within an error bound
• diminishing stepsize yields exact convergence

Randomized cyclic order works well in practice
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R-IPG vs. ART

minimize (1/2)
∑m

i=1(a
T
i x− bi)2

subject to x ∈ C

Let gi(x) = (1/2)(aTi x− bi)2 and hi(x) = 0:

xk+1 = PC

(
xk − ρ

aik(a
T
ik
xk − bik)

t−1k + ‖aik‖2

)

Interpretation: ART with damped step size
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R-IPG vs. ART — numerical example

2D tomography problem
• 256×256 Shepp–Logan phantom
• n = 2562 = 65536 variables
• p = 120 uniformly spaced angles
• r = 362 parallel rays
• m = pr = 43440 measurements
• Gaussian noise: ei ∼ N (0, 0.02 · ‖b‖∞)

Algorithm: R-IPG with constant step size
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R-IPG vs. ART — numerical example
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Regularized data fitting

minimize f(x) ≡ (1/2)‖Ax− b‖2 + λh(x)

subject to x ∈ C

Example: express f(x) as

f(x) =

m∑

i=1

(1/2)(aTi x− bi)2︸ ︷︷ ︸
gi(x)

+

m∑

i=1

λ

m
h(x)

︸ ︷︷ ︸
hi(x)
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Total-variation regularization

minimize (1/2)‖Ax− b‖22 + λ
∑n

i=1 ‖Dix‖2
subject to x ∈ C

Let gi(x) = ‖Aix− bi‖22 and hi(x) = (λ/p)
∑n

i=1 ‖Dix‖2

zk = argmin
u∈Rn

{
gik(u) +

1

2tk
‖u− xk‖2

}

= xk −ATik(AikA
T
ik
+ t−1k I)−1(Aikxk − bik)

xk+1 = PC
(
ρ(zk − tk∇̃hik(zk)) + (1− ρ)xk

)
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Total-variation regularization — numerical example

2D tomography problem
• 512×512 Shepp–Logan phantom
• n = 5122 = 262144 variables
• p = 60 uniformly spaced angles
• r = 724 parallel rays
• m = pr = 43440 measurements
• Gaussian noise: ei ∼ N (0, 0.01 · ‖b‖∞)

Algorithm: R-IPG1 with diminishing step-size sequence
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Regularization curve
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Reference

Original Filtered backprojection Total variation regularized LS
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Relaxed incremental proximal subgradient method
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Primal–dual first-order method (Chambolle & Pock)
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Relaxed Incremental Proximal Methods
for Tomographic Imaging
Martin S. Andersen and Per Christian Hansen
Section for Scientific Computing, Technical University of Denmark
Motivation
Many classical so-called “row-action methods” for tomographic imaging can
only be used to solve a relatively small class of reconstruction problems,
and it is well-known that their performances depend strongly on a relaxation
parameter. Motivated by this, we propose relaxed variants of the
incremental proximal gradient (IPG) methods of Bertsekas [1] which allow
us to interpret many row-action methods as members of a class of relaxed
incremental proximal gradient (R-IPG) methods. The R-IPG methods make
it easy to construct generalized row-action methods that incorporate
different kinds of prior information in the reconstruction problem via
regularization [2].

Relaxed Incremental Proximal Method
Bertsekas’ IPG methods solve problems of the form

minimize
Pp

i=1 (gi(x) + hi(x))

subject to x 2 C.

The IPG methods can be extended to relaxed iterations of the form

wk = argmin
u

⇢
gik(u) +

1
2tk

ku � xkk2
�

R-IPG zk = wk � tk erhik(wk)

xk+1 = PC
�
(1 � ⇢)xk + ⇢zk

�

where ⇢ 2 (0, 2) is a relaxation parameter, tk is the step size at iteration k ,
ik 2 {1, . . . , p} is the index of the function that is used at the k th iteration,
and erhik(wk) denotes an arbitrary vector in the subdifferential of hik at wk .

Kaczmarz’s Method as a Relaxed Incremental Proximal Method
If we let gi(x) = 1/2 (aT

i x � bi)
2 and hi(x) = 0, we obtain the following R-IPG

method:

xk+1 = xk � ⇢aik

(aT
ik xk � bik)

t�1
k + kaikk2

2

.

This is equivalent to Kaczmarz’s method if we let the step-size parameter
tk ! 1, and hence this R-IPG method can be viewed as a damped variant
of Kaczmarz’s method. Similarly, if we let gi(x) = 1/2 kAix � bik2

2 and
hi(x) = 0, we obtain a block-version of the method:

xk+1 = xk � ⇢AT
ik (AikA

T
ik + t�1

k I)�1(Aikxk � bik).

Here AT
ik (AikA

T
ik + t�1

k I)�1 can be viewed as a regularized Moore–Penrose
pseudo-inverse of Aik . The method is equivalent to a block-variant of
Kaczmarz’s method if we let the step-size parameter tk ! 1.

TV-Regularized Tomographic Image Reconstruction
The above R-IPG methods can be generalized to solve the following image
reconstruction problem with total variation regularization and box
constraints

minimize 1/2 kAx � bk2 + � kxkTV

subject to l  x  u.

Here kxkTV denotes the total variation of x . If we partition A into p
block-rows A1, . . . , Ap, the objective function can expressed as a sumPp

i=1(gi(x) + hi(x)) with gi and hi defined as

gi(x) = 1/2 kAix � bik2, hi(x) = �/p kxkTV.

This choice results in algorithms that take a small (sub)gradient step for the
regularization term, a damped projection on a hyperplane defined by one of
the equations Aix = bi, followed by a projection on the variable bounds.

Numerical Experiment: TV-Regularized Sparse-View Tomography
Consider a sparse-view tomographic reconstruction problem on a 512⇥512
grid based on noisy measurements using a parallel beam geometry with
724 parallel beams and 60 uniformly spaced projection angles. This yields
a very underdetermined system of equations. A natural way of partioning
the problem data A and b is to split it into p = 60 blocks, Ai 2 R724⇥5122 and
bi 2 R724 where each block corresponds to a single parallel projection.

Detector

X-ray source

The plot below shows the relative error kxpc � xexactk2/kxexactk2 as a
function of the number of cycles c for different relaxation parameters.
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Comparison with Primal–Dual First-Order Method
The relaxed incremental proximal methods often yield very good
low-accuracy approximations in just a few cycles. In comparison, the
Chambolle–Pock primal–dual first-order algorithm usually requires many
more iterations to reach a good approximation.
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Summary

• relaxed incremental proximal gradient methods
• slow global rate of convergence
• often fast initial rate rate of convergence
• hybrid methods that transition from incremental to non-incremental method
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Thank you for listening!

mskan@dtu.dk

http://compute.dtu.dk/~mskan
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