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Exploiting prior knowledge in CT
Discrete imaging model:
Ax =10

Typical CT images:

» Regions of homogeneous tissue.

» Separated by sharp boundaries.

Reconstruction by regularization:

x* = argmin D(Az,b) + I -R(z)

T

Sparsity-promoting choices:
» R(x) = ||z|h (¢1/basis pursuit)
» R(x) = ||z|lTv (total variation)
» R(z) = ||DTz|; (analysis-£1)
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TV example: Physical head phantom, CB-CT

96-view FDK 96-view TV 960-view FDK

(Bian 2010).
Courtesy of X. Pan, U. Chicago.
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TV example: Human coronary artery, CB-CT

Courtesy of X. Pan, U. Chicago.

Data collected with a bench-top CB-CT of Dr. E. Ritman at Mayo
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Less successful CT cases for TV:

(Herman & Davidi, 2008) (J. et al, 2011) (Courtesy of S. Soltani, DTU)

Original

TV
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Lack of quantitative understanding

Some fundamental questions remain unanswered:

» Under what conditions will reconstruction work?
» Robustness to noise?

» Which types of images?

» What is sufficient sampling?

Application-specific vs. general

» Focus on the imaging model.
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Classical CT sampling results

Continuous image and data:
> Based on invertibility and stability of Radon transform etc.
» Fan-beam: 180° plus fan-angle

» Cone-beam: Tuy's condition

Discrete data:
» Nyquist sampling
» Assumption of bandlimited signal
» (Huesmann 1977, Natterer)

Reconstruction with sparse/compressible signal assumption?
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Compressed Sensing

Guarantees of accurate reconstruction

» Under suitable assumptions, a sufficiently sparse signal can be
recovered from few measurements by £1-minimization.

» RIP, incoherence, spark, ...

For tomography?
» So far no practically useful guarantees.

» Results for certain discrete tomography cases (Petra et al.)

This study:

» Empirical study of sampling conditions for tomographic
reconstruction of sparse signals

» Recoverability of single images

» Worst-case vs. average case
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Reconstruction problems

Inequality-constrained regularization:

¥ =argminR(z) st [[Az —b|2 <e
x

Simplified reconstruction problems:
BP xgp = argmin  |[z|; st Ax=0b
xX
ATV  zary = argmin ||D7z||; st. Az =0
xX

finite-difference approximation of gradient
Algorithms:
» Our interest: Reliably obtaining accurate solution, not speed.

» Recast as linear programs (LPs) and solve by MOSEK.
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Non-uniqueness of solutions

Both BP and ATV can have multiple solutions for same data:

» 1-norm convex, but not strictly convex.

» Even if x4 is @ minimizer, others may exist.
orig y

Consequences:
» Different algorithms may produce different solutions.

» Decision of recoverability of xyig is algorithm-dependent.

Alternative idea:

» Can we test for uniqueness of solution?
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Uniqueness test for BP

Given:

» b= Axorig

> I = support(Torig)

» A;is A with columns [
Characterization of solution uniqueness:

> Zorig uniquely minimizes miny ||z][; st. Az =b
if and only if

> Ay is injective, and

. T, — o T
» Jw:  Ajw =sign(Toig)r and [|Ajw|e <1
(Plumbley 2007, Fuchs 2004, Grasmair et al. 2011)
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Uniqueness test for ATV

Given:

» b= Axorig

» I = support(DT zgrig)

» Dy is D with columns I
Characterization of solution uniqueness:

> Toig UNiquely minimizes min, [|[DTz|; st. Ar=1b
if and only if

> (1) is injective, and

DT,
» Jw,v: Dv=ATw, vy =sign(D¥reig), |vrelloo <1

Application of (Haltmeier 2013)
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Uniqueness testing procedure using LP

BP
1. Check
injectivity:
]| y A
2. Solve LP:
t* = argmin ¢t
—te < ALw < te
A?w = sign(Torig) 1
3. Unique iff:

tr <1

ATV

(o1

t* = argmin t

—te < wvye < te
Dv = ATw
vy = sign(D] Torig)
<1
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The geometry and system matrix

» Disk-shaped image inscribed in
A Nside X Nsige square.

» Number of pixels:

2
Nside

T
N~ —
4

> Fan-beam, equi-angular views
(Nviews = 3 shown)

IR
%92

ot
5K

» Number of rays per view: 2Ngqe

n

> System matrix A size:
N

M = Nviews : 2]\7side A

Elements A;; computed by the line intersection method
(implementation: www.imm.dtu.dk/~pch/AIRtools/)
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www.imm.dtu.dk/~pch/AIRtools/

BP image class examples images

spikes

1-power

2-power

Relative 0.1 0.3 0.5 0.7 0.9
sparsity
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Reconstruction error vs. sampling and sparsity
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Phase diagrams: spikes with BP
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Excellent agreement of reconstruction and uniqueness test.

Well-separated “no-recovery” and “full-recovery” regions.

Phase transition as in compressed sensing (Donoho-Tanner).
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Comparing image classes, BP
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Example images: altproj, trununif

altproj
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Phase diagrams: altproj with ATV
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Excellent agreement of reconstruction and uniqueness test.

v

Well-separated “no-recovery” and “full-recovery” regions.

v

Phase transition as in compressed sensing (Donoho-Tanner).
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Comparing image classes, ATV
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Time: Reconstruction vs.

time in secs
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» 10 repetitions at each relative sparsity and 5, 13, 21 views.

> Comparable time of reconstruction (R) and uniqueness test (UT).
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A more well-known image: Shepp-Logan on disk
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Conclusions and future work

Conclusions
» Empirical evidence of relation between sparsity and sampling
» Reconstruction and uniqueness test
» Phase transition from no to full recovery
» Small dependence on image class, mostly sparsity

» Additional results (not shown): limited angle, robustness to
noise, scaling with image size.

Future work and open questions
» Extensions: Isotropic TV, more realistic image classes, ...
» Theoretical /compressed sensing explanation?

» Connection to classical CT sampling results?
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