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Abstract—With increased densities on chips and the growing
popularity of multicore processors and general-purpose graphics
processing units (GPGPUs) power dissipation and energy con-
sumption pose a serious challenge in the design of system-on-
chips (SoCs) and a rise in costs for heat removal. In this work,
we analyze the impact of power dissipation in floating-point (FP)
units and we consider different alternatives in the implementation
of FP-division that lead to substantial energy savings. We
compare the implementation of division in a Fused Multiply-
Add (FMA) unit based on the Newton-Raphson approximation
algorithm to the implementation in a dedicated digit-recurrence
unit. The results show a significant reduction of energy in a
typical scientific application when the division digit-recurrence
unit is used. In addition, we model the thermal behavior of the
considered FP-units.

Index Terms—floating-point; fused multiply-add; division; low
power; thermal analysis.

I. INTRODUCTION

Technology scaling allowed a dramatic increase of chip
densities and a consequent clock frequency increase especially
from the mid-nineties and for about ten years. The typical CPU
clock rate rose from about 300 MHz in 1996 to 3 GHz in 2003.
The drawback of this trend was the increased dynamic power
dissipation to levels that would soon become unmanageable.
Increased power dissipation results in excessive heat dissipa-
tion with a rise in cooling costs (heat sinks, fans, etc.) and the
risk of compromising chips (electromigration).

To have high computing power by keeping the power
dissipation to an acceptable level, computer evolved from
single high-rate clock processor to parallel multi-processor
(multicore) systems, on the same chip, with clock rates in
the range 1 to 3 GHz. In addition to general purpose CPUs,
in recent years, Graphic Processing Units (GPUs) for General
Purpose computing (GPGPUs) have emerged as a cheap and
viable solution for massive parallel computing.

Although the clock rates have reached a plateau, the power
consumption of state-of-the-art multicores and GPGPUs is still
quite high and poses problems on cooling and power budgets
especially for large data centers [1].

Moreover, transistor’s leakage power, due to sub-threshold
currents, has become significant in today’s nanometric tech-
nologies. This leakage power increases with the chip temper-
ature. For this reason, thermal management of large Systems
on Chip (SoCs) has become an important design aspect.

In this work, we analyze the impact on power dissipation
of the Floating-Point (FP) units implemented in multicores
and GPUs and propose some alternatives to reduce the power
dissipated and to mitigate the thermal profile of large SoCs.

We model the main FP operations (on binary641 operands)
by using VHDL descriptions of units similar to those im-
plemented in state-of-the-art processors, and extract post-
synthesis power dissipation and thermal profiles of those FP-
units.

The unit considered for FP addition and multiplication is a
Fused Multiply-Add (FMA) unit which is a popular choice in
multicores [3] and GPUs [4]. For FP division we considered
the multiplicative approach implemented by the FMA unit,
and the digit-recurrence approach with a unit similar to that
of [5].

In addition, we propose a low power solution for division
based on an architecture derived from [6] and [7].

The FP-units presented are not intended to be the best in
performance or power consumption, but to provide realistic
models to evaluate the latency, area and power trade-offs of
FP-units populating large SoCs.

II. FUSED MULTIPLY-ADD UNIT

A Fused Multiply-Add (FMA) unit implements the floating-
point operation

A + B × C .

The main advantages of the fused implementation over the
separate implementation of multiplication and addition are:

• The high occurrence of expressions of that type in
scientific computation, and the consequent reduction in
overhead to adjust the operands from the IEEE format
to the machine internal representation (de-normalization,
etc.).

• Improvement in precision, as the result of multiplication
is added in full precision and the rounding is performed
on A + B × C.

The drawback is that if a large percentage of multiply and
add cannot be fused, the overhead in delay and power is large
especially for addition.

1The double-precision format is now called binary64 in the IEEE 754-2008
standard [2].

978-1-4244-6967-3/10/$26.00 c© 2010 IEEE 257 ASAP 2010



CBA

INV

RSHIFTER

Z

MULTIPLIER

CSA3:2

ADDER

INV

LSHIFTERLOD

53
53 53

106 106
161

161

53

10655

161 161

Satge 1

Satge 2

Satge 3

ROUNDING
Satge 4

Fig. 1. Scheme of a FMA unit

The architecture of the FMA unit, shown in Fig. 1, is derived
from [8] and [9]. In the figures, we omit the processing of
exponents and signs to simplify the drawings.

The operation performed is Z = A + B × C. In order
to prevent shifting both A and the product of B × C, A is
initially positioned two bits to the left of the most significant
bit (MSB) of B × C so that only a right shift is needed to
align A and the product B × C. The zero bits inserted in the
two least-significant (LS) positions are used as the guard and
round bits when the result significand is A. The amount of
shift depends on the difference between the exponents of A
and B × C. Moreover, A is conditionally inverted when the
effective operation is subtraction.

A Booth encoded tree multiplier computes the product of
B ×C and the result is in carry-save format to be added with
the shifted A.

Since the product has 106 bits, only the 106 LSBs of the
shifted A are needed in the carry-save adder (CSA). The 55
MSBs of the shifted A are concatenated with the sum of the
CSA to form the input to the adder. Since the carry output of
the CSA has 106 bits, only one of the inputs to the adder has
161 bits.

Consequently, the leftmost 55 bit portion of the adder is
implemented as an incrementer with the carry-out of the lower
part as the increment input. The adder also performs end-
around-carry adjustment for effective subtraction. As the result
might be negative, an array of inverters is required at the output
of the adder.

Once the result of the addition is obtained, the amount of the
normalization shift is determined by the leading one detector
(LOD). No right shift for normalization is required due to the
initial position of A.

To increase the throughput, the FMA unit is implemented
in a four-stage pipeline. The position of the pipeline registers
is indicated with dashed horizontal lines in Fig. 1.

III. DIVISION BY MULTIPLICATION

The quotient q of the division

q =
x

d
+ rem

can be computed by multiplication of the reciprocal of d and
the dividend x

q =
1
d
· x

This is implemented by the approximation of the reciprocal
R = 1/d, followed by the multiplication q = R · x.

By determining R[0] as the first approximation of 1/d, R
can be approximated in m steps by the Newton-Raphson (NR)
approximation [8]

R[j + 1] = R[j](2 − R[j]d) j = 0, 1, . . . , m

Each iteration requires two multiplications and one subtrac-
tion. The convergence is quadratic and the number of iter-
ations m needed depends on the initial approximation R[0]
(implemented by a look-up table in our case).

Once R[m] has been computed, the quotient is obtained by
an additional multiplication Q = R[m] · x.

To have rounding compliant with IEEE standard, extra
iterations are required to compute the remainder and perform
the rounding according to the specified mode [8]:
• rem = Qd − x
• q = ROUND(Q, rem, mode).

The NR algorithm for binary64 division (m = 2) is
summarized below.

R[0] = LUT(d);
FOR i := 0 TO 2 LOOP

W = 2 - d * R[i];
R[i+1] = R[i] * W;

END LOOP;
Q = x * R[3];
rem = x - d * Q;
q = ROUND(Q,rem,mode);

Although division by iterative multiplication is expensive
in power, it has been chosen to implement division in AMD
processors [10], NVIDIA GPUs [4], and in Intel Itanium CPUs
[11].

The original FMA unit needs to be augmented with a look-
up table and several mutiplexers and registers in order to
achieve the initial approximation and implement the division
algorithm. The implementation of the multiplicative method
based on FMA unit is shown in Fig. 2. The FMA components
not used for division are shown in dashed lines. Control signals
to these disabled units are carefully designed so that they
dissipate static power only.

A look-up table is generated using the midpoint reciprocal
method [12], of which the entries are the reciprocals of

258 ASAP 2010



CBA

INV

RSHIFTER

W

MULTIPLIER

CSA3:2

ADDER

INV

LSHIFTERLOD

53
53 53

106 106
161

161

53

10655

161 161

Satge 1

Satge 2

Satge 3

MUX

Approx

MUX

Lookup 
Table

MUX

R

53

MUX

INCR

DEMUX

W

W

R

R

MUX

Z

53

ROUNDING
Satge 4

Fig. 2. Scheme of the modified FMA unit to support division.

midpoints of the input intervals. The dividend x is stored in
register B and divisor d in register C.

The first cycle is to obtain the initial 8-bit approximation
R[0]. After that, the operations performed in the 4-stage
pipelined unit of Fig. 2 are the following (Stage 1 is abbrevi-
ated S1, etc.):

S1 The initial approximation R[0] is multiplied by d using
the tree multiplier.

S2 The product is complemented to obtain 2 − R[0]d. This
is achieved by using the array of inverters in this stage
and the incrementer in next stage.

S3 The 2−R[0]d operation is completed in the incrementer.
The demux directs data to the incrementer only so that the
switching activity in the LOD and LSHIFTER of Fig. 2
are minimized. The result is stored in register W (W [1] ←
(2 − R[0]d)).

S1 W [1] is multiplied by R[0].
S2 The multiplication W [1]R[0] is continued.
S3 The new approximation R[1] ← W [1]R[0] is stored

in register R. The new approximated reciprocal has a
precision of 16 bits.

The above 6 steps have to be repeated two more times to

have R[3] with the precision necessary for binary64 division.
Once the correct approximation of 1/d has been computed,

another two iterations in the multiplier are required to com-
pute:

1) the non-rounded quotient: Q = x · R[3];
2) the remainder: rem = Q · d − x necessary for IEEE

compliant rounding.

Finally, Q is rounded according to the remainder and the
specified rounding mode

q = ROUND(Q, rem, mode) .

Summarizing, the number of clock cycles required for the
implementation of the division algorithm with the unit of Fig. 2
is 26 as detailed in Table I.

cycles
initial approx. R[0] 1
three NR iterations 3 × 6 = 18
non-rounded quotient Q = x ·R[3] 3
remainder rem = Q · d− x 3
rounding 1
Total cycles 26

TABLE I
CYCLES FOR BINARY64 DIVISION IN FMA UNIT.

IV. DIVISION BY DIGIT-RECURRENCE

The digit-recurrence algorithm [13] is a direct method to
compute the quotient of the division

q =
x

d
+ rem

The radix-r digit-recurrence division algorithm for binary64
(double-precision) significands is implemented by the residual
recurrence

w[j + 1] = rw[j] − qj+1d j = 0, 1, . . . , n

with the initial value w[0] = x and the quotient-digit qj+1,
normally in signed-digit format, which provides log2 r bits of
the quotient at each iteration. The quotient-digit selection is

qj+1 = SEL(dδ, y) qj+1 = [−a, a]

where dδ is d truncated after the δ-th fractional bit and the
estimated residual, y = rw[j]t, is truncated after t fractional
bits. The residual w[j] is normally kept in carry-save format
to have a shorter cycle time.

The divider is completed by a on-the-fly convert-and-round
unit [13] which converts the quotient digits qj+1 from the
signed-digit to the conventional representation, and performs
the rounding.

The digit-recurrence algorithm is quite a good choice for
the hardware implementation because it provides a good
compromise latency-area/power and rounding is simple (the
remainder is computed at each iteration). A radix-4 division
scheme is implemented in Intel Pentium CPUs [5], in ARM
processors [6] and in IBM FPUs [14].
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A. Intel Penryn division unit

The division unit implemented in the Intel Core2 (Pen-
ryn) family is sketched in Fig. 3 [5]. It implements IEEE
binary32/binary64 compliant division, plus extended precision
(64 bits) and integer division. The unit consists of three main
parts: the pre-processing stage necessary to normalize integer
operands to ensure convergence; the recurrence stage; and the
post-processing stage where the rounding is performed.

The recurrence is composed of two cascaded radix-4 stages
synchronized by a two-phase clock to form a radix-16 stage
(4 bits of quotient computed) over a whole clock cycle. Each
radix-4 stage is realized with a scheme similar to that of [6]
shown in Fig. 4.

We now briefly summarize the algorithm of [6]. The radix-4
recurrence is

w[j + 1] = 4w[j] − qj+1d j = 0, 1, . . . , n

with qj+1 = {−2,−1, 0, 1, 2}.
The quotient-digit qj+1 is determined by performing a

comparison of the truncated residual y = ̂4w[j] (carry-save)
with the four values (mk) representing the boundaries to select
the digit for the given d. That is,

y ≥ m2 → qj+1 = 2
m1 ≤ y < m2 → qj+1 = 1
m0 ≤ y < m1 → qj+1 = 0
m−1 ≤ y < m0 → qj+1 = −1

y < m−1 → qj+1 = −2

This selection can be implemented with a unit (QSL) similar
to that depicted in Fig. 4.a where four 8-bit comparators (sign-
det.) are used to detect in which range y lies. The coder

4
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Fig. 4. a) Selection by comparison (QSL). b) Single radix-4 division stage.

then encodes qj+1 in 1-out-4 code which is suitable to drive
multiplexers.

In parallel, all partial remainders wk[j + 1] are computed
speculatively (Fig. 4.b), and then one of them is selected once
qj+1 is determined. The carry-save output of the radix-4 stage
is than hardwired to shift-left 2 bits (multiplication by 4).

This scheme was selected because of the reduced logical
depth. The critical path of the unit in Fig. 4 is

tREG + tQSL + tbuf + tMUX + tsu (1)

where tREG and tsu are the w-register propagation de-
lay and set-up time, tQSL is the delay of the QSL block
(tCSA + t8b−CPA + tcoder), tbuf is the delay of a buffer
necessary to drive the high load of the multiplexer select, and
tMUX is the delay of the multiplexer.

However, the speculation on the whole w-word (54 bits for
[6], 68 bits for the Core2 format) is quite expensive in terms
of area and power dissipation.

According to [5], a maximum of 6+15=21 cycles are
required to perform a division on binary64 (double-precision)
operands.

B. Low power radix-16 division unit

An alternative to the Penryn solution, is to have a radix-
16 divider obtained by overlapping (and not cascading) two
radix-4 stages. In this scheme, the speculation is applied to
the narrower y-path as explained next. Examples of radix-16
dividers by radix-4 overlapping are reported in [13] and [7].
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The radix-16 retimed recurrence, illustrated in Fig. 5.a, is

v[j] = 16w[j − 1] − qHj(4d)
w[j] = v[j] − qLjd

with qHj ∈ {−2,−1, 0, 1, 2}, qLj ∈ {−2,−1, 0, 1, 2}, and
w[0] = x (eventually shifted to ensure convergence). In
Fig. 5.a, the position of the registers is indicated with a
dashed horizontal line. The recurrence is retimed (the selection
function is accessed at the end of the cycle) to increase the
time slack in the bits of the wide w-path (at right) so that
these cells can be redesigned for low power [7].

The block QSL in Fig. 5.b is the same as that of Fig. 4.a.
In this case, while qH is computed, all five possible outcomes
of qL are computed speculatively. Therefore, the computation
of qL is overlapped to that of qH , and qL is obtained with a
small additional delay.

Tc Cycles Latency Area Pave

Unit [ns] [ns] [μm2] [mW ]
FMA ADD only 0.75 4 3.0 129,807 57.0
FMA MUL only 265.1
FMA MA fused 291.4
FMA DIV 0.75 26 19.5 124.1
Penryn 0.80 18 14.4 22,900 13.27
r16div 0.75 18 13.5 16,110 7.78

Pave is average power measured at 1 GHz.

TABLE II
RESULTS OF IMPLEMENTATIONS.

The critical path of the unit in Fig. 5 is

tqH
REG + tbuf + tHMUL + tHCSA + tLCSA + tQSL + tSEL

MUX + tqL
su

Because of the retiming, only the 10 MSBs of ws and wc are
on the critical path, while the rest can be optimized for low
power during synthesis.

The total number of iterations to compute a binary64
division, including initialization and rounding, is 3+15=18.

V. IMPLEMENTATION OF THE FP-UNITS

To analyze the impact on power dissipation of the different
units and to evaluate the different approaches to division, we
implemented the three units for binary64:

. FMA is the fused multiply-add unit of Fig. 2 modified
to execute the NR division algorithm.

. r16div is the radix-16 divide unit of Fig. 5 completed
with convert-and-round unit and sign and exponent com-
putation and update.

. Penryn is the division unit of Fig. 3 modified to handle
binary64 only. That is, the recurrence is composed by
two cascaded radix-4 stages (Fig. 4.b) plus the same ini-
tialization, convert-and-round unit and sign and exponent
processing as the r16div.

The units are synthesized by Synopsys’s Design Compiler
with a 65 nm standard cell library and are laid-out by Syn-
opsys’s IC Compiler. All units are synthesized to obtain the
maximum speed. Because in our flow we do not use two-phase
clocks, for the Penryn implementation we cascaded the two
radix-4 stages of Fig. 3 into a single clock cycle.

We used Synopsys’s Power Compiler to estimate the power
based on randomly generated input vectors conformed to IEEE
754 binary64 format. The synthesis results are summarized in
Table II. The power dissipation data for the FMA are divided
by operation.

The Penryn unit cannot be clocked at TC = 0.75 ns
(corresponding to a frequency of 1.33 GHz) as its critical path
(1) is now

tREG + 2 · (tQSL + tbuf + tMUX ) + tsu .

The proposed r16div scheme is the one with the lowest latency
for division. It can probably be clocked with the same scheme
used in Intel Core2 FP-units and provide the same throughput
at reduced area and power dissipation.
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The power dissipation is normalized for all units at 1 GHz to
have a fair comparison. For the three operations: ADD, MUL
and MA fused, the power was measured with the pipeline
full to get the worst case power dissipation necessary to
characterize the thermal behavior (Section VII) of the units.
For division, being an iterative algorithm, the power was
measured per operation. This explains why the value Pave

for FMA DIV is smaller than the other FMA cases.
As for floating-point division, from the data of Table II

it is clear that the digit-recurrence approach (Penryn and
r16div) is much more convenient in terms of latency, area
and power dissipation. The only argument in favor of the FMA
DIV is that division is much less frequent than addition and
multiplication to justify the longer latency and the ten-fold
power dissipation.

VI. ENERGY CONSUMPTION IN FP-OPERATIONS

In [15], the average frequency of floating-point operations in
the SPECfp92 benchmark suite is reported. The most common
instructions are multiply and add with MULT accounting for
37% and ADD for 55%. Moreover, the FP adder consumes
nearly 50% of the multiply results which explains why fused
multiply-add units are often used in modern processors. Table
III summarizes the instruction mix. The first column shows
the mix when none of the MULT and ADD instructions are
fused. The second column shows the updated mix when 50%
of the MULT instructions are fused with ADD.

To compare the energy consumption of units with different
latencies a suitable metric is the energy consumption per
operation (Eop) which is defined as

Eop = Pave × latency = Pave · n · TC [J ] .

The values of Eop (at 1 GHz) for the FP-units implemented
are listed in Table IV.

Due to the significant reduction in Eop for division, we
propose to use a digit-recurrence (Penryn or r16div) divider
for FP-division. To compare the energy savings between
division by FMA and by digit-recurrence, we use the SPICE
benchmark which has a rather high percentage of divisions
[16].

We list the results of the comparison in Table V to show the
upper and lower bound of the energy consumption. In Table
V, the results are obtained by assuming none of the MULT
instructions can be fused with the ADD (top) and by assuming
all MULT can be fused with the ADD (bottom). In all three
cases, the MULT and ADD operations are implemented by
the FMA unit. The DIV operation is implemented either in
Penryn, r16div or FMA.

Note that the comparison is based on the four FP operations
(ADD, MULT, Fused MA, DIV). Therefore, Percentage in
Total is not 100%. Due to the reduction in the number of
instructions by fusing MULT and ADD, there is a reduction
in the total amount of instructions which is reflected in the
Percentage in Total in Table V (bottom).

not fused fused
ADD 55.0% 44.8%
MULT 37.0% 22.7%
FMA 0% 22.7%
DIV 3.0% 3.7%
OTHERS 5.0% 6.1%

TABLE III
INSTRUCTION MIX.

n Pave Eop

Unit [mW ] [pJ ]
FMA ADD only 4 57.0 228.11
FMA MUL only 4 265.1 1060.41
FMA MA fused 4 291.4 1165.58
FMA DIV 26 124.1 3226.57
Penryn 18 13.27 238.79
r16div 18 7.78 139.98

Pave is average power measured at 1 GHz.

TABLE IV
ENERGY-PER-OPERATION.

In both cases (fused MA or not) there is significant reduc-
tion (around 40%) in energy consumption by using a digit-
recurrence divider to implement binary64 division.

VII. THERMAL ANALYSIS

To perform the thermal analysis, we use the model proposed
in [17], which consists of a conventional RC model of the
heat conduction paths around each thermal element. The
differential equation modeling heat transfer according to the
Fourier’s law is solved by first transforming it into a difference
equation, and using the electrical simulator SPICE to solve the
equivalent RC circuit.

A circuit is meshed into three-dimensional thermal cells.
The z direction is discretized into 9 layers and on each layer
x and y directions are both discretized into 20 units which
result in a grid of 20 × 20 × 9 = 3600 cells in total. This
provides us accurate temperature estimations at standard cell

Percentage Penryn r16div FMA
[pJ ] [pJ ] [pJ ]

DIV 8.0% 19.1 11.2 258.1
ADD 45.0% 102.7
MUL 26.0% 275.7
Fused MA 0.0% −
Total 79.0% 397.5 389.6 636.5

Percentage Penryn r16div FMA
[pJ ] [pJ ] [pJ ]

DIV 8.0% 19.1 11.2 258.1
ADD 19.0% 43.3
MUL 0.0% −
Fused MA 26.0% 303.1
Total 53.0% 365.5 357.6 604.5

TABLE V
ENERGY CONSUMPTION IN SPICE WITHOUT (TOP) AND WITH (BOTTOM)

FUSED MULTIPLY-ADD.
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Fig. 6. Comparison of thermal profiles: FMA alone (left) and FMA plus r16div (right). Temperatures are in ◦C.

level with a reasonable simulation overhead. Cells inside the
grid are connected to each other while cells on the boundary
are connected to voltage sources that model the ambient
temperature. In our thermal model, we adopted the thermal
conductivities of different layers from [18].

Because the radix-16 division unit (r16div) has a much
lower power consumption than the FMA, by having a separate
division unit will not only save energy, but also reduce the peak
temperature since the r16div unit can act as a heat spreader.
Similar floorplan strategies can be found in high-end multicore
processors where caches are placed beside cores [19] to partly
take away the excessive heat generated inside the cores.

Fig. 6 shows the impact on temperature distribution when
the r16div is placed next to the FMA. Temperatures shown
in the figure indicate the rise above the ambient temperature.
The left figure is a thermal map of the FMA unit alone and
the right figure shows the thermal map when a r16div unit is
placed above the FMA. Power consumption in both units are
estimated based on workload characterized by the instruction
mix with fused MA as shown in Table III. The size of the
thermal maps of Fig. 6 is scaled to the physical dimensions
(area), but both maps are determined on the same grid of
thermal cells (i.e. the planar grid 20×20 of the right figure
is coarser).

In the left thermal map in Fig. 6, the upper left region
corresponds to the tree multiplier in the FMA unit which
occupies most of the area and also has the highest power
consumption. This is reflected by the high temperature colored
in red. The peak temperature reached is 47◦C over the ambient
temperature. In the right thermal map, by putting the divider
beside the multiplier the hot-spot becomes smaller. The area
of the circuit is increased and as a result thermal resistance to
the ambient is reduced. The peak temperature dropped from
47◦C to 43◦C and the average temperature is also reduced by

about 4◦C.
In high-end processors where there are multiple floating-

point execution units, the peak temperature can become ex-
tremely high due to the increased thermal coupling between
these units. The low power division units like r16div can
be used to partly mitigate the thermal problem. By placing
the division units in between the FMA units, we can reduce
the thermal coupling and thus reduce peak temperature. In
nanometer technologies where static power becomes domi-
nant, even a slight reduction in temperature can have positive
impacts on the increasing leakage power. Table IV and Table V
show that the r16div unit also saves energy when the effective
operation is division. However, the overhead is an increase in
total area.

VIII. CONCLUSIONS

In this paper, we compared the power dissipation and energy
consumption in floating-point units which are typically used
in modern multicore processors and GPGPUs. Implementing
the division operation in a Fused Multiply-Add (FMA) unit
consumes much more power and energy than in a dedicate
divider based on the digit-recurrence algorithm. By using a
digit-recurrence divider together with the FMA, we found a
significant reduction of energy in a typical scientific applica-
tion over the implementation of all floating-point arithmetic
operations in FMA. Moreover, adding a separate divider also
reduces the peak temperature rise in the FMA by about 4◦C
according to our thermal analysis.

These results suggest to implement digit-recurrence based
FP-division units in multicores and GPUs. Sacrificing a little
area – the r16div area is 1/8 that of the FMA – it would be
possible to reduce both power dissipation and chip temperature
at same, or improved, performance. The division-by-FMA
approach has been preferred because the low percentage of
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divisions in programs allows multiple issues of more frequent
multiply and add operations in FMAs. However, in GPUs
where several FP-units are grouped in clusters (e.g. in [4])
it might be reasonable to include a digit-recurrence division
(and square-root) unit in each cluster to reduce the power
dissipation when the percentage of divisions is not negligible.
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